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Abstract

Here we give a mathematical proof that a current method that calculates dominant
poles is locally convergent. Moreover, the convergence is at least quadratic.
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1 Introduction

Several methods have been proposed to solve the problem of finding dominant
poles of a transfer function. Here we focus in methods arising in Power Systems
Control, like those reported in [2], [3], [4].

We pointed out in a discussion enclosed in [4] that one of these methods,
called Dominant Pole Method, had local quadratic convergence. This method
intended to calculate one dominant pole of a transfer function f given by
f(s) = cT (A − sI)−1b, where A ∈ RN×N , b, c ∈ CN . From a starting value
s(0) ∈ C, this method generates a sequence of complex values from iterations
of the following scheme:

s(k+1) =
yT

k Axk

yT
k xk

,

where xk = (A−s(k)I)−1b and yT
k = cT (A−s(k)I)−1. Simple calculations show

that this expression corresponds to the classical Newton method for finding a

zero of the function g given by g(s) =
1

cT (A − sI)−1b
.
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A generalization of this method in order to calculate several dominant poles of
that transfer function was proposed in [3] and was called the Dominant Pole
Eigenvalue Solver (DPSE). There, it was expected that dominant poles would
be yielded by iterating the following scheme:

{s
(k+1)
1 , ..., s(k+1)

n } = λ( (Y T
k Xk)

−1(Y T
k AXk) )

where

Xkei =
(A − s

(k)
i I)−1b

cT (A − s
(k)
i )−1b

and

eT
i Yk =

cT (A − s
(k)
i I)−1

cT (A − s
(k)
i )−1b

.

In this scheme, and from now on, λ(A) denotes the spectrum of the matrix A,
and {e1, ..., eN} is the canonical basis of RN .

The purpose of this paper is to present a view of DPSE from a slight dif-
ferent perspective. We will see that the eigenvalues of A are superattracting
fixed points of the scheme defined by this method, which leads to quadratic
convergence to them.

2 Preliminary results

Let A ∈ RN×N be a matrix with N distinct eigenvalues. Let b, c ∈ RN be two
unit vectors such that the transfer function

f(s) = cT (A − sI)−1b

has p dominant poles (1 ≤ p << N), that is, for a spectral decomposition of
A, A = PDP−1,

cT (A − sI)−1b =
N

∑

i=1

ri

λi − s
, |r1| ≥ · · · ≥ |rp| >> |rp+1| ≥ · · · |rN | ≥ 0,

where ri = (eT
i P−1b)(cT Pei), λi = Dii.

First of all, we will show that, for each k, the matrix Mk = (Y T
k Xk)

−1(Y T
k AXk)

is well defined, if some conditions were satisfied. The local quadratic conver-
gence of the method will be proved in the next section.
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Let S = (s1 · · · sp)
T ∈ Cp, such that (∀i, j) si 6= sj , if i 6= j. Suppose that (∀k)

sk is not an eigenvalue of A. For k = 1, ..., p let

xk =
(A − skI)−1b

cT (A − skI)−1b
, yT

k =
cT (A − skI)−1

cT (A − skI)−1b
.

Remark 1 Note that

xk =
Adj (A − skI)b

cT Adj (A − skI)b
, yT

k =
cT Adj (A − skI)

cT Adj (A − skI)b
.

Therefore, the definition of xk and yk would make sense even when sk is a
simple eigenvalue of A:

xk =
Pej

cT Pej

, yT
k =

eT
j P−1

eT
j P−1b

,

where 1 ≤ j ≤ N is such that djj = sk. Moreover, xk and yk are entire
functions of s.

Lemma 2 Let A ∈ R
N×N be a matrix with N distinct eigenvalues. Let S =

(s1 · · · sp)
T ∈ Cp, such that (∀i, j) si 6= sj, if i 6= j. Let X = [x1 · · ·xp] and

Y = [y1 · · ·yp], where (∀k) xk and yk are defined as above. Then the matrix
Y T X is symmetric and non-singular.

PROOF. First, suppose that (∀k) sk is not an eigenvalue of A. Therefore,

(Y T X)ij = eT
i Y T Xej =

cT (A − siI)−1

cT (A − siI)−1b

(A − sjI)−1b

cT (A − sjI)−1b
=

=
cT (A − siI)−1

cT (A − siI)−1b

(A − sjI)−1b

cT (A − sjI)−1b
=

cT P (D − siI)−1

cT (A − siI)−1b

(D − sjI)−1P−1b

cT (A − sjI)−1b
=

=
(λ1 − si, ..., λN − si)diag(P T c)

cT (A − siI)−1b

diag(P−1b)(λ1 − sj , ..., λN − sj)
T

cT (A − sjI)−1b
.

Let G ∈ CN×p be defined by Gij = (λi − sj)
−1. Let R be the N × N diagonal

matrix such that Rii = (cT Pei)(e
T
i P−1b), that is, the residual ri. Let E be the

N × N diagonal matrix defined by Fii = [cT (A − siI)−1b]−1. Then, Y T X =
EGT RGE.

Since |r1|, ..., |rp| are nonzero, the rank of R is at least p. (∀i) Eii 6= 0 for si

is not an eigenvalue. Moreover, since the submatrix G(1 : p, 1 : p) is a non-
singular Cauchy matrix [1], the rank of RGGT is p. Therefore, the rank of
Y T X is p.
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If for some k sk is an eigenvalue of A, let Ekk = Rkk and Gek = ek, and the
proof works with slight modifications.

2

Remark 3 In practice, the columns vectors xk, yk are obtained after normal-
izing the vectors (A−skI)−1b and (A−skI)−T c, and dividing both the yielding
vectors zk, wk, respectively, by cT zk (which is equal to bT wk). Notice that the
result is the same in exact arithmetic. This procedure has diminished numerical
errors near convergence.

3 DPSE has local quadratic convergence

Let M = (Y T X)−1Y T AX. Note that if si is an eigenvalue of A then, by
Remark 1, Y T AXei = siY

T Xei. Thus si is also an eigenvalue of M .

Now, since

AXei = A
(A − siI)−1b

cT (A − siI)−1b
= siXei +

b

cT (A − siI)−1b
,

it follows that

M = diag(S) + (Y T X)−1Y T B,

where diag(S), as above, is the diagonal matrix defined with the elements of
the vector S in the diagonal, and Bei = b/cT (A−siI)−1b (if si is an eigenvalue
of A, then AXei = siXei and Bei = 0). Hence M is a rank-one perturbation
of the diagonal matrix diag(S).

Definition 4 Suppose X is a topological space and ∼ is an equivalence rela-
tion on X. We define a topology on the quotient set X/ ∼ (the set consisting
of all equivalence classes of ∼) as follows: a subset V ⊆ X/ ∼ is open in X/ ∼
if and only if its preimage q−1(V ) is open in X, where q : X → X/ ∼ is the
projection map which sends each element of X to its equivalence class. The
quotient set X/ ∼ with this topology is said to be a quotient space.

Now, let PCp be the quotient space Cp/ ∼, where x ∼ y iff there is a permu-
tation matrix P such that y = Px. Let Ω = {(s1, ..., sp)|si 6= sj, if i 6= j}/ ∼.
Ω is an open set of PCp.

Let λ1, ..., λp be distinct eigenvalues of A. Since the spectrum of a matrix
depends continuosly on its entries, let O be an open set of Ω which contains
(λ1, ..., λp)/ ∼ such that the eigenvalues of M are simple.
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Let F : O → PCp be the function defined as follows: if M = V TV −1 is a spec-
tral decomposition of M , F (S) is the class of equivalence of (F1(S), ..., Fp(S))
where

Fi(S) = si +
cT XV ei

cT (A − siI)−1XV ei

Since cT (A − siI)−1A = cT + sic
T (A − siI)−1, and cT (A − siI)−1AXV ei =

tiic
T (A − siI)−1XV ei, it follows that

cT XV ei = (tii − si)c
T (A − siI)−1XV ei.

Therefore, Fi(S) = tii. Thus, F is well defined. Moreover, since the eigenvalues
of M are simple, F is a differentiable function.

It is not difficult to see that (the class of) a p-uple of distinct eigenvalues
(λ1, ..., λp) is a fixed point of F . For if A = PDP−1 and S = (λ1, ..., λp), then

eT
i Y Xej =

eT
ki

P−1Pekj

eT
ki

P−1bcT Pekj

=
eT

ki
ekj

eT
ki

P−1bcT Pekj

and

eT
i Y AXej =

eT
ki

P−1APekj

eT
ki

P−1bcT Pekj

=
eT

ki
Dekj

eT
ki

P−1bcT Pekj

where 1 ≤ kr ≤ N is such that dkrkr
= λr. Hence M = diag(dk1k1

, ..., dkpkp
),

and so F (S/ ∼) = S/ ∼.

The following theorem is the main goal of this paper.

Theorem 5 If for each iteration k the si are distinct then the DPSE scheme
has local quadratic convergence.

PROOF. The result follows once it is established that DF (Λ) = 0, where
Λ = (λ1, ..., λp). To this end, one computes that

∂Fi

∂sj

(Λ) = δij + det(A − λiI)
cT ∂

∂sj
(XV ei)

cTAdj (A − λiI)XV ei

−δij

cT XV ei

(cT Adj (A − λiI)XV ei)2
cT (Adj (A − λiI))2XV ei

− det(A − λiI)
cT XV ei

(cT Adj (A − λiI)XV ei)2
cT Adj (A − λiI)

∂

∂sj

(XV ei) =

= δij − δij

cT XV ei

(cT Adj (A − λiI)XV ei)2
cT (Adj (A − λiI))2XV ei

where δij =











1, if i = j;

0 otherwise.
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For S = Λ, it follows that V is the identity matrix, and so,

(cT XV ei)(c
T (Adj (A − λiI))2XV ei)

(cT Adj (A − λiI) XV ei)2
=

=
(cT Xei)(c

T (Peki
eT

ki
P−1)2Xei)

(cT Peki
eT

ki
P−1Xei)2

=
(cT Xei)(c

T Peki
eT

ki
P−1Xei)

(cT Peki
eT

ki
P−1Xei)2

=

=
cT Xei

cT Peki
eT

ki
P−1Xei

=
cT Xei

cT Peki
eT

ki
P−1Peki

=

cT Xei

cT Peki

= 1

Therefore,
∂Fi

∂sj

(Λ) = 0. 2

4 Conclusions

DPSE has been extensively applied and become popular in model reductions
of large linear systems (see [3], [4]). In this paper it was proven that DPSE is
like a Newton’s method: its convergence is quadratic once one of its iterates is
attracted by a fixed point. However, there is no proof whatsoever that DPSE
converges to dominant poles in the sense of [3]. This will depend on the basins
of attraction of the fixed points and on the initial point selection. Moreover,
in practice it has been seing that the performance of DPSE as an eigensolver
depends enormously of the vectors b and c, besides the initial vector for its
scheme. Some experiments with DPSE as a general eigensolver are reported
in [2].
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