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Abstract

Here we give a mathematical proof that a current method that calculates dominant
poles is locally convergent. Moreover, the convergence is at least quadratic.
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1 Introduction

Several methods have been proposed to solve the problem of finding dominant
poles of a transfer function. Here we focus in methods arising in Power Systems
Control, like those reported in [2], [3], [4].

We pointed out in a discussion enclosed in [4] that one of these methods,
called Dominant Pole Method, had local quadratic convergence. This method
intended to calculate one dominant pole of a transfer function f given by
f(s) = cT(A — sI)7'b, where A € RV b ¢ € CV. From a starting value
s(0) € C, this method generates a sequence of complex values from iterations
of the following scheme:
g1 — yg;ll"k7
Yi. Tk
where 1, = (A—s®1)~'h and y} = ¢'(A—s®T)~'. Simple calculations show

that this expression corresponds to the classical Newton method for finding a
1

T(A—sl)~

zero of the function g given by ¢g(s) =
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A generalization of this method in order to calculate several dominant poles of
that transfer function was proposed in [3] and was called the Dominant Pole
Eigenvalue Solver (DPSE). There, it was expected that dominant poles would
be yielded by iterating the following scheme:

{s\Y s} = MV X)) T (VT AXG) )

) bl n

where
A—sP1)
Xpei = e (k))
cT(A—s;")"1b
and
v _ (A Sz(k)f)_l
T er(A— sy

In this scheme, and from now on, A(A) denotes the spectrum of the matrix A,
and {ey, ..., ex} is the canonical basis of RY.

The purpose of this paper is to present a view of DPSE from a slight dif-
ferent perspective. We will see that the eigenvalues of A are superattracting
fixed points of the scheme defined by this method, which leads to quadratic
convergence to them.

2 Preliminary results

Let A € RV*N be a matrix with N distinct eigenvalues. Let b, ¢ € RY be two
unit vectors such that the transfer function

f(s)=c"(A—s)™'b

has p dominant poles (1 < p << N), that is, for a spectral decomposition of
A, A= PDP1,

Ty

)\Z’—S’

N
(A=sI)Tb=3 1l = 2 | >> frppa| = -+ [ri] 2 0,
i=1

where T, = (eZP_lb)(cTPei), >\2 = D“

First of all, we will show that, for each k, the matrix M = (VI X)) 1 (YT AX})
is well defined, if some conditions were satisfied. The local quadratic conver-
gence of the method will be proved in the next section.



Let S = (sy---s,)T € CP, such that (Vi,j) s; # s;, if i # j. Suppose that (Vk)
Sk is not an eigenvalue of A. For k =1, ...;p let

o (A —s1)7t ST = (A — s D)7t
P (A= s ) TR T (A= s D)

Remark 1 Note that

Adj(A—s )b o cTAdj (A — si)
TAdj (A — s, Dbk~ TAdj (A — s, )b’

T =

Therefore, the definition of xj and yr would make sense even when s is a
simple eigenvalue of A:

T p—1
SRS B R
TPe;” “F 7 T P-1p’
where 1 < 5 < N s such that dj; = s,. Moreover, x, and y, are entire

functions of s.

Lemma 2 Let A € RV*Y be a matriz with N distinct eigenvalues. Let S =
(s1---s,)T € CP, such that (Vi,j) si # s;, if i # j. Let X = [x1---x,] and
Y = [y1---yp), where (Vk) x) and yi, are defined as above. Then the matriz
YTX is symmetric and non-singular.

PROOF. First, suppose that (Vk) sy is not an eigenvalue of A. Therefore,

(A=sI)™" (A—=s; )"
T(A—s;I)7bcT(A—s;1)~ b

(YTX);=e] YT Xe; =

. CT(A — Si])_l (A — Sj[)_lb . CTP(D — Si[)_l (D — Sj[)_lp_lb .
(A =5 )T (A—s; )b T(A—sI)b T(A—s; D)

(A1 = Siy oy Av — si)diag(PTe) diag(P7'0) (M — 8,00y A — 85)7

(A —s 1)1 (A —s;I)"1b '
Let G € CN*P be defined by G;j = (N, — s;)"'. Let R be the N x N diagonal
matriz such that Ry = (c” Pe;)(el P™'b), that is, the residual r;. Let E be the
N x N diagonal matriz defined by Fy; = [c¢T(A — s;,1)7'0]7'. Then, YTX =
EGTRGE.

Since ||, ..., |rp| are nonzero, the rank of R is at least p. (Vi) E;; # 0 for s;
is not an eigenvalue. Moreover, since the submatriz G(1 : p,1 : p) is a non-
singular Cauchy matriz [1], the rank of RGGT is p. Therefore, the rank of
YTX isp.



If for some k si is an eigenvalue of A, let Ey. = Ry and Gey, = ey, and the
proof works with slight modifications.

O

Remark 3 In practice, the columns vectors xy, yr are obtained after normal-
izing the vectors (A— s, 1) and (A—si.I)"Tc, and dividing both the yielding
vectors zy, wy, respectively, by cTz, (which is equal to bTwy,). Notice that the
result is the same in exact arithmetic. This procedure has diminished numerical
errors mear convergence.

3 DPSE has local quadratic convergence

Let M = (YTX)'YTAX. Note that if s; is an eigenvalue of A then, by
Remark 1, YT AXe; = 5,YT Xe,;. Thus s; is also an eigenvalue of M.

Now, since

(A - Si[)_lb b
TA—sl) b T T A

AXEiZ' =A
C

it follows that
M = diag(S) + (Y"X)"'Y"B,

where diag(S), as above, is the diagonal matrix defined with the elements of
the vector S in the diagonal, and Be; = b/c?(A—s;1)71b (if s; is an eigenvalue
of A, then AXe; = s;Xe; and Be; = 0). Hence M is a rank-one perturbation
of the diagonal matrix diag(95).

Definition 4 Suppose X is a topological space and ~ s an equivalence rela-
tion on X. We define a topology on the quotient set X/ ~ (the set consisting
of all equivalence classes of ~) as follows: a subset V- C X/ ~ is open in X/ ~
if and only if its preimage ¢~ (V') is open in X, where q : X — X/ ~ is the
projection map which sends each element of X to its equivalence class. The
quotient set X/ ~ with this topology is said to be a quotient space.

Now, let PCP? be the quotient space C?/ ~, where x ~ y iff there is a permu-
tation matrix P such that y = Px. Let Q = {(s1,...,sp)|s; # s, if i # j}/ ~.
() is an open set of PCP.

Let Aq,..., A, be distinct eigenvalues of A. Since the spectrum of a matrix
depends continuosly on its entries, let O be an open set of 2 which contains
(A1, ...; Ap)/ ~ such that the eigenvalues of M are simple.



Let F' : O — PCP be the function defined as follows: if M = VTV ! is a spec-
tral decomposition of M, F'(S) is the class of equivalence of (F(S), ..., F,(.5))

where
' XVe;

CT(A — SZ‘I>_1XV€Z‘
Since ¢f'(A — s;1) 1A = &' + s;¢T(A — s, 1)L, and ¢T(A — s;1) TAXVe; =
tiiCT(A — Si])_lXV€i, it follows that

CTXVQZ' = (t” - Si)CT(A - Si[)_leei.

Therefore, F;(S) = t;;. Thus, F' is well defined. Moreover, since the eigenvalues
of M are simple, F' is a differentiable function.

It is not difficult to see that (the class of) a p-uple of distinct eigenvalues
(A1, ..., Ap) is a fixed point of F. For if A= PDP~!and S = (\y, ..., \,), then

T p—1 T
Ty X, = il Do, el
! T el P=1pcT Pey.  €F P=1bcT Pey,.
kl J kz J
and o .
e, P~ APey, ey Dey.
el YAXe; = -~ L = L

e;j;P‘lbcTPekj n e;j;P‘lbcTPekj
where 1 < k., < N is such that dy,, = A.. Hence M = diag(dy, s, , .., di,k, ),
and so F/(S/ ~) =5/ ~.

The following theorem is the main goal of this paper.

Theorem 5 If for each iteration k the s; are distinct then the DPSE scheme
has local quadratic convergence.

PROOF. The result follows once it is established that DF(A) = 0, where
A= ()i,...,\y). To this end, one computes that

T 0
oF; B c 8—8j(XVe,-)
88]- (A) = 52']' + det(A — )\z[) CTAdj (A — AZI)XVGZ

CTXV(BZ‘
' X Ve,
' X Ve,

Loafi=j;

0 otherwise.

—0y S (Adj (A= NI))*X Ve,

clAdj (A — Ail)i(XVei) =
8Sj

—det(A — \)

= 0ij — 0ij cT(Adj (A= NI))*X Ve,

where 6@']’ = {



For S = A, it follows that V is the identity matriz, and so,

(" XVe) (" (Adj (A= NI))*XVe;)
(cTAdj (A — NI) XVe;)? B

_("Xe) (" (Pey,ef, P12 Xe;) (" Xe;)(c" Peyef P71 Xey)

(c"Peyef P~1Xe;)? (T Pepel P71 Xe;)?
B "' Xe; B T Xe; B
N cTPekiefiP_lXei n cTPekiefiP_lPeki N
' Xe; _ 1
c! Pey,
Therefore, @(A) =0. O
0s;

4 Conclusions

DPSE has been extensively applied and become popular in model reductions
of large linear systems (see [3], [4]). In this paper it was proven that DPSE is
like a Newton’s method: its convergence is quadratic once one of its iterates is
attracted by a fixed point. However, there is no proof whatsoever that DPSE
converges to dominant poles in the sense of [3]. This will depend on the basins
of attraction of the fixed points and on the initial point selection. Moreover,
in practice it has been seing that the performance of DPSE as an eigensolver
depends enormously of the vectors b and ¢, besides the initial vector for its
scheme. Some experiments with DPSE as a general eigensolver are reported
in [2].

References

[1] R. Bellman, Introduction to Matriz Analysis, 2nd ed. (SIAM, Philadelphia,
1997).

[2] Licio H. Bezerra, Carlos Tomei and R. Alan McCoy, Mobius Transforms and
Solvers for Large Sparse Generalized Nonsymmetric Eigenvalue Problems, Tech.
Rep. TR/PA/98/03, CERFACS, Toulouse (1998).

[3] N. Martins, The Dominant Pole Spectrum Eigensolver, IEEE Trans. on Power
Systems 12(1) (1997), 245-254.

[4] N. Martins, L. T. G. Lima and H. J. C. P. Pinto, Computing Dominant Poles
of Very High Order Transfer Functions, IEEE Trans. on Power Systems 11(1)
(1996), 162-170.



