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Abstract

In this paper we give a new short proof of the local quadratic convergence
of the Dominant Pole Spectrum Eigensolver (DPSE). Also we introduce here
the Diagonal Dominant Pole Spectrum Eigensolver (DDPSE), another fixed-
point method that computes several eigenvalues of a matrix at a time, which
also has local quadratic convergence. From results of some experiments with
a large power system model, it is shown that DDPSE can also be used in
small-signal stability studies to compute dominant poles of a transfer function
of the type ¢! (A — sI)~!b, where b and c are vectors, by its own or combined
with DPSE. Besides DDPSE is also effective in finding low damped modes
of a large scale power system model.
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1. Introduction

A power system can be described as a coupled system of differential and
algebraic equations. The following matrix equation is obtained by linearizing
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the system model at an operating point:

(5)- (25 ()

where Ji, Jy, J3, Jy are matrices, x is the vector of dynamical variables and

Jy Jo
T J4) denotes the

Jacobian matrix of the system. Since y = —J; 'Jsz, we have

y is the vector of algebraic ones. The matrix J = (

T = (Jl — JQJZIJ:;) X.

The matrix A = J; — JoJ; ' J3 is called the state matrix of the system. For
large scale power systems J is very sparse, while A is not in general. We can
observe that, given a vector x, we can easily compute z = (A — A )~'z by
solving the following algebraic system

) ()= (5) 0

From that we note that we can compute eigenvalues of the state matrix A,
even without explicitly calculating it.

Knowledge of rightmost eigenvalues of A is essential in the power system
small-signal stability analysis. In the literature there are several papers that
use standard methods to compute rightmost eigenvalues of a state matrix
from Equation 1 [3, 10]. On the other hand, some authors prefer instead to
deal with the generalized eigenvalue problem Ju = AEu, where

o
2= (00)

and I is the identity matrix [8]. However, this approach requires a non-
obvious strategy to control instability caused by the spurious eigenvalue at
infinity, for instance, if you use generalized Mobius transforms [1, 4]. The
landscape of small-signal stability analysis has changed a little when methods
based on transfer functions, like the Dominant Pole Algorithm (DPA) [5]
and the Dominant Pole Spectrum Eigensolver (DPSE) [6], have arisen in
literature. It was found that DPA, which computes a single eigenvalue at
a time, is actually a Newton’s method ([2], [9]). Furthermore, DPSE is
a fixed-point method that can compute several eigenvalues at a time, and



it can be seen as a generalization of DPA in a certain way. In order to
calculate p eigenvalues by DPSE, you should solve p linear systems of the type
(J—upE)z =w, k =1: p, at each step. On the other hand, in power system
stability studies, a suitable pre-ordering of the Jacobian matrix equations and
variables prevents large amounts of fill-in and thus its sparse LU factorization
is done with lower computational complexity. Moreover, DPSE converges
quadratically and a proof of its local quadratic convergence first appeared in
[2]. Nevertheless, here we give an easier proof, which can be seen in §2. We
will also show that a slight modification of DPSE yields a new fixed-point
method, the Diagonal Dominant-Pole Spectrum Eigensolver (DDPSE), that
also has local quadratic convergence, as discussed in §3. In the last section,
we see results obtained from the implementation of those two methods in
MATLAB. From these tests we verify that both methods really compute
dominant poles of a transfer function of the type ¢* (A — sI)~'b, where b and
c are vectors, besides being also effective in finding low damped modes of the
system. Summarizing, our paper makes the following contributions: it shows
a much easier proof of the local quadratic convergence of DPSE; it introduces
DDPSE, a new eigensolver, that also has local quadratic convergence; it
presents some performance results obtained from DPSE, DDPSE and SADPA
(Subspace Accelerated Dominant Pole Algorithm) when applied to a large
generalized eigenvalue problem. SADPA is part of a public software, which
can be seen in https://sites.google.com/site/rommes/software.

2. DPSE

The motivation for the Dominant Pole Spectrum Eigensolver (DPSE)
came from SISO dynamical systems (E, J, B,C, D) of the form

Ei(t) = Jx(t) + Bu(t) 5
y(t) = CT(t) + Du(t) (2)

where J,E € RN B = diag([1,...,1,0,...,0]); z(t) € R¥*! is composed
by dynamical and algebraic variables, z4(t) and x,(t), which are respectively
associated with the unit and the null diagonal entries of E; B,C € RN*!,
where BT = (BT BI') and CT = (CT CT); u(t) € R is the input, y(t) € R is
the output, and D € R. Suppose that there are n dynamical variables in the
system. If Jy = J(1:n,1:n), Jo=J1:n,n+l:N),J3=J(n+1:N,1:n)
and Jy = J(n+1: N,n+1: N), then that system is equivalent to the
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Figure 1: Sparse pattern of the Jacobian matrix that corresponds to a planning model of
the Brazilian Interconnected Power System (nz is the number of its nonzero entries)



following one:
° {x'(t) = Ax(t) + bu(t)
y(t) = cTx(t) + du(t)

where the matrix A = J; — JoJy 1 J;, which is called the state matrix of the
system, b = By — JoJ; ' By, c = Cy— JIJ;7Cpand d = D — CTJ; ' B,. The
corresponding transfer function h : C — C is defined as
h(s) = c" (sT — (= JoJ; Js)) " b+d. (3)
Simple calculation yields that
h(s)=CT(sE—J)'B+D.
Note that, for any p ¢ A(A) and for any b € C",

((A—gfrlb) B () - pp)! (g) . @

Suppose that A € R™" is diagonalizable, that is, A = PDP~!, where
P is an invertible matrix and D, a diagonal matrix. So, the spectrum of A,
denoted by A(A), is the set of the diagonal entries of D. From now on we
suppose that every eigenvalue of A is simple.

Let b,c € R™ such that ¢'(A — sI)7'h # 0 for all s € C — A\(A), and
' Perel P71b £ 0 for k =1:n. If d = 0, from Equation 3,

where R, = cTPeke;fP_lh k=1:n.

Definition 1. A pole dj is called a dominant pole if it corresponds to a
| Ry
| Re(d )|

relatively large my = my, is the measure for dominance of the

pole dk,k‘

Remark 1. Suppose that, for some k € {1,...n}, dix is a converged eigen-
value at step r. Then, the corresponding right and left vectors, x, and y,,
are such that
T A e, P! Pep 1 1
Yrtr = TP, TPe, ~ TPerel P10 Ry
From that we can easily calculate the corresponding measure my, for domi-
nance of the pole.




Now, since

(A—sI)™'b  Adj(A—sI)b o (AT —sI)"'c  Adj (AT —sl)c
T(A—sD=b  cTAdj(A—sI)b T(A—s)=b  cTAdj(A— s’

we conclude that the functions f : C — C" and g : C — C" defined respec-
tively by

F(s) = { AD b for s € C — MA);
- Pej

T P, .
ct Pe;

()

for s =dj;,j =1:n.
and

(6)

P_Tej
bTP_Tej

T_sI)~1c
o(s) = { % for s € C — A(A);
for s =dj;,j =1:n.
are entire functions (bear in mind that any entry of the Classical Adjoint of
(A — sI) is a sum of products of its elements).
Let S = (s1...5,)" € CP, p < n, and suppose that X(S),Y(S) € O™
are defined by X (S)er = f(sx) and Y (S)er = g(sg), for k = 1 : p, where

e, ..., e, are the canonical vectors.

Lemma 1. Let Sy = (dkl,kl dkp,kp), where dy, , ... i, k, 5 a p-uple of dis-
tinct eigenvalues, 1 < ki < ... < k, < n. Then, there is an open neighborhood
O of Sy so that Y (S)T X (S) is invertible for any S belonging to O.

>, (7)

that is, Y (Sp)T X (Sp) is invertible. O

PrRoOOF. The lemma follows because

1 1
T Peg,ef P71b" "7 ¢ Pey, el P~1b

Y(So)" X (So) = diag (

Let F : O — C™ defined by F(S) = (Y/(S)TX(S)) ™ (Y(S)TAX(S)).
We see that F' is analytic. Since

T .
F ((dkhkl dkp,kp) ) = dlag ([dkl,]ﬂ? couy dkp,kp]) y
every eigenvalue of F' is simple for S belonging to an open subset Z of O.

Let G : Z — CP be the function defined by G(S) = (A (F(S)) ... \,(F(9))),
where A\ (F(S5)) < ... < A\p(F(S)) are the eigenvalues of F'(S) (for some order
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on the complex numbers). Observe that (dkl,kl dkP’kp)T is a fixed point of
G. On the other hand, if s; is not an eigenvalue for ¢ = 1 : p, we conclude
that F'(S) is equal to

diag($)+(Y ()7 X(9)) " ee” diag ([CT(A _151[)119’ (A —1sp[)1bD ’

for Y(S)b = e, where e = ones(p,1). In order to calculate the derivative of
G, we first see that

oF
e, (dklyku s dkp,kp) = €;€

88i

1
zT_ T T 512 Y6 »
c!' Pey,e, P~1b

where vT = (CTPekleflP_lb... cTPekpeZpP_lb) Therefore,

Ok

g (dkl,]ﬂ? "'7dkp,k:p) = <

Notice that

O
Oays

OF

(F (diy by s diyoiy)) 75 (i oy oor iy k) )-

Ok,
0a,

(F (dkl’ku D) dkp,kp)> = ekef.
Hence,

O
85’@-

1 T
¢’ Pey,el P~1b "

T T
(dkl,ku EREE) dkp,kp) = €; € €xeL U = 0.

Definition 2 (DPSE). The fixed-point iteration applied to the function
G(S) = (M(F(9)) - Ap(F(5)))

where F(S) = (Y(S)TX(S))_1 (Y(S)TAX(S)), defines the Dominant Pole
Spectrum Eigensolver.

With this definition, we have just proved the following proposition:

Proposition 2 (DPSE converges at least quadratically). Let A1, ..., A, be p
distinct eigenvalues of A. Then, there is a neighborhood V' of (A; ... )\p)T such
that DPSE converges at least quadratically to (M ... \,)" for any Sy € V.



T
Remark 2. Suppose that DPSE has just calculated S = <s§” sg)>

from ST~V and X (S™) has not been computed yet. For any k =1 : p, we
have that
AX(S(T_l))ek =
(A—s™ N
cT'(A— sg_l))—lb

=(A-— 8,(;_1)] + 3,(;_1)])

b (r-1) -1
= + s X(S(T ))ek
T(A— s D)-1p g
Therefore, the relative error, ||(A — s\)X(STD)e,||/|1 X (STD)eg||, be-
comes as follows:

r—1 r r—
ety (s = 87) X(SC e
. 8
XS D) (®)

k

Note that, if s " tends to an cigenvalue, then ¢”(A — s "")~1b tends to
zero, and so, X (S V)¢, is an approximation of an associated eigenvector.

3. DDPSE

Figure 2: Partial spectrum of the state matrix
If the fixed-point method is only applied to the diagonal of the matrix

F(S), then a variant of the DPSE is created, which will be called here as the
Diagonal Dominant Pole Spectrum Eigensolver (DDPSE):

H ((s1 s,,)T) 1 diag (F(s1 ... 5,)) = (51...5,)7+
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+diag (LT(A _1511)_%,..., T —15,,1)—117}) (Y(S)TX(S)) e

where e = ones(p, 1) and s; ¢ A\(A) for all i =1 : p. Note that fori=1:p

T(A—s;I)"'b  cTAdj(A — s;I)b’

which is zero if s; is an eigenvalue of A. So, we define
H (()\1 )\p)T) = (A1 AT

if (A\1...2,)7 is a p-uple of distinct eigenvalues. Therefore, any p-uple of
distinct eigenvalues is a fixed-point of H.

Proposition 3 (DDPSE converges at least quadratically). Let Ay, Ag, ..., A\,
be p distinct eigenvalues of A. Then, there is a neighborhood V' of (A1 ... \p)"
such that, given any Sy € V, DDPSE converges at least quadratically to

ooy AT
PRrROOF. Let \; = dkl,’ﬂ? R )‘p = dkp,kp~ Then,

0OH
88i

1 —1
_ cTPek.e{.P*1b6i6? (Y(S)"X(S)) e

((dkhlﬁ dk:p,kp)) = €;

From 7, (Y(S)TX(S))_1 = diag ([CTPekleglP_lb, s CTPekpepr_lbD. So,

oOH

— ((dky oy - dipr,)) = 0. O
0s;

Our test matrix J is sparse (density about 0.028%), of order N = 13251.
The pencil Jv = AEv, where E = diag(1,...,1,0,...,0), corresponds to the
problem Az = Az, where A = J, — JoJ; ' Js is of order n = 1664. This is
the Jacobian matrix that corresponds to a planning model of the Brazilian
Interconnected Power System and that had already used for tests in [§]. In
the tests with DPSE and DDPSE, we have used data that can be obtained
from a specific transfer function. From this, D = 0, and the input vector
B = (B} BT) and the output vector C' = (CJ CTI') are as follows: B(524) =
B(1442) = 1, B(1884) = B(1918) = —1, and the others entries of B are
null; C(11558) = 26.5721, C(11559) = —13.1127, C(12502) = —29.2954,



C'(12503) = 3.7609 and these are all the non-zero elements of C'. By using
MATLAB, we verify that CTJ;'B, = 0, and then d = 0. Note that, from
Equation 3, for any s ¢ A(A), CT(J — sE)™'B = ¢T'(A — sI)~'b, where
b= By— JoJ;'B,, c=Cy— JL I TC,.

Suppose We start with p cornplex values: s(0 = (sgo) 51(;0) e Cr.
Let X = X© and Y = Y be two matrices N x p, such that for j =
1:p X(j) = (J—sVB)'B/CT(J — s$VE)"'B and Y(,j) = (JT —
sg»o)E)_lC/C’T(J —sYE)1B. Let V = V© and W = W© be two matrices

J
n X p such that, for j =1 : p,

V(i j) = (A—sD)/c"(A - s0T)

and
W(:,5) = (AT — s 1) e/cT(A — s 1)

So, we have
wWTv =YTEX,

and for j=1:p
WTAVe; = WT(A - sO7 4+ s01)(A— V1) /cT(A - s 1)7 1 =
=W'b/c"(A — sgo)I)_lb + sgo)WTVej =e/c"(A— sgg)l)_lb + SE'O)WTVGJ',
where e = ones(p, 1). Therefore,
F=WM'WV)"'"WTAV = (WTV) e + 5,

where S = S© = diag(s"), and

o = () = (1/CT(A— Oy /e (A= 5O 1) 1b>

Note that, from Equation 4, we can use either DPSE or DDPSE to partially
solve Equation 2, that is, we can carry out all the computation with .J, B
and C without explicitly computing A, b and c.

We have specified a relative error tolerance of 107 to both right and left
vectors. Here we have used

1(J = sPE)XEDej|| [|(JT — s E)Y EDey|
X ®Dey]] o [V & e

10



as the relative errors instead of using the equivalent formulae obtained from
Equation 8, for we do not want to compute b explicitly. Convergence is
achieved when both of these convergence criteria are satisfied. Suppose we
have just obtained the first converged value sgk) = A;. Then, we save their
corresponding right and left generalized eigenvectors, X *Ye; and Y+ Ve,
to the respective columns of X and Y for » > k. In the case of a complex
converged value, we add one more column to X and Y, with the right
and left generalized eigenvectors associated to its conjugate: sg?l = \;. Note
that the respective columns of V) and W) are formed by the dynamical
variables of X*~De; and Y*~Ye, | respectively. Those converged eigenvalues
can be deflated from the problem by this procedure. To see that, suppose
Vey & 101 +asvs, where v; &~ V= De; and vy is an eigenvector corresponding
to Ay. Hence,

AV@Q ~ al)\lvl + 6@)\2@2 ~ al<)\1 — )\2)‘/61 + )\2‘/62,

and so,
(WTV) " WTAV ey ~ a1 (M — As)er + Ao,
Thus,
AL X X oo0 X
0 Ay X --+ X
F=100 x---x
0 0 x--+ X

4. Numerical results

All the computed eigenvalues were actually complex conjugate pairs, but
only their positive imaginary values are listed in the following tables for
brevity. In Table 1 you see 7 eigenvalues calculated by DDPSE and DPSE
from starting values sy = k.(—141), k =1 : 7. There you can observe that
the number of LU factorizations required by DDPSE is about 13% smaller
than that required by DPSE. Also, DDPSE found six poles that have the
largest measures of relative dominance, while DPSE found four. However,
for kK > 7, eg., k = 10, DPSE had a better performance regarding the
number of LU factorizations than DDPSE. Table 2 compares the eigenvalues
calculated respectively by DDPSE, DPSE and SADPA from starting values
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sp = (k—1/2)(—1+14), k =1 :10. The Subspace Accelerated Dominant
Pole Algorithm (SADPA) was the algorithm chosen for comparison with
DPSE and DDPSE due to excellent results formerly obtained with our test
matrix, which was reported for instance in [7]. To this end, we have used
the script test_dpa_family.m as starting point, with options 3 (our sparse
matrix of order 13251) and 2 (SADPA), which is available at https://sites.
google.com/site/rommes/software. The default (maximum) number of
eigenvalues to be calculated by SADPA is ten. All the measures of relative
dominance of the eigenvalues obtained by SADPA were computed by DPSE.
In order to compare the results from the three methods we have used the same
(p =)10 initial shifts given in the left complex semi-plane: s, = r*(—1+1)/2,
r=1:2:20. You see that with those 10 initial shifts DDPSE did not
converge to —0.0335 4+ 1.0787 ¢, which are the most dominant poles of the
system. On the other hand, our eigenvalue problem is so ill-conditioned
that if s, = (k — 1/2)(—1 + 81i/82), k = 1 : 10, are used instead of s =
(k—1/2)(—=141), k = 1: 10, our results will change a lot, as you see in Table
3. Note that the eigenvalues of A are very clustered around zero, according
to Figure 2. To improve DDPSE’s performance in respect to the number
of LU factorizations, we propose to carry out some steps of DPSE before
applying DDPSE. You see in Table 4 that after executing only one step of
DPSE the number of LU factorizations required by DDPSE lowered from 93
(Table 2) to 68. This initial procedure resulted in better initial estimates to
be used by DDPSE, which has only local convergence. Our experiments with
DPSE have shown that it has large basins of attraction. The tests have been
performed in the MATLAB R2011b 64 bits at a HP Compaq 6000 Pro, with
processor Intel Core 2 Duo E8400 3.00 GHz.
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DDPSE DPSE

Eigenvalues Dominance Eigenvalues Dominance
—0.0335 + 1.0787¢ 760.11 || —0.0335 4 1.0787: 760.11
—0.5567 + 3.6097: 14.87 || —0.6120 + 0.3587¢ 12.40
—0.6120 + 0.3587¢ 12.40 || —2.9445 + 4.8214¢ 6.85
—0.4548 4 4.70544 5.78 || —1.2936 + 1.4028¢ 5.59
—1.2936 + 1.4028: 5.59 || —1.0829 + 0.8747: 3.78
—0.9931 + 0.1082: 2.00 || —1.4463 + 1.4565: 3.58
—7.5416 + 6.2292; 1.07 || —4.0233 + 4.21244 2.60

’ Number of LU factorizations: 60 H Number of LU factorizations: 68

Table 1: Eigenvalues calculated respectively by DDPSE and DPSE from starting values
s =k.(=1+1), k=1:7, and their measure of relative dominance

DDPSE DPSE SADPA

Eigenvalues Dominance Eigenvalues Dominance Eigenvalues Dominance
—0.6120 + 0.3587: 12.40 || —0.0335 4+ 1.0787¢ 760.11 | —0.0335 + 1.0787¢ 760.11
—2.9445 + 4.82144 6.85 || —0.6120 + 0.3587% 12.40 || —0.5567 + 3.6097i 14.87
—1.8415 + 6.98591 5.11 || —2.9445 + 4.82144 6.85 || —0.1151 + 0.2397¢ 2.20
—1.4463 + 1.4565¢ 3.58 || —1.4463 + 1.4565¢ 3.58 || —0.5208 + 2.8814¢ 0.79
—4.0233 + 4.21244 2.60 || —4.0233 +4.2124¢ 2.60 || —0.0356 + 0.0000¢ 0.21
—5.7475 + 6.77611 1.43 || —5.7475 + 6.7761¢ 1.43 || —0.1139 + 0.0000¢ 0.10
—5.8148 + 4.87041 1.36 || —5.8148 + 4.8704: 1.36 || —0.1291 + 0.0000¢ 0.04
—6.9172 + 3.22924 0.62 | —5.5632 + 7.7510¢ 1.22 || —0.1440 + 0.0000¢ 0.04
—3.1087 + 0.1476: 0.49 || —7.5416 + 6.2292¢ 1.07 || —0.1276 + 0.00007 0.02
—8.0955 + 9.8277i 0.16 || —6.9657 + 11.08401¢ 0.15

‘ Number of LU factorizations: 93 H Number of LU factorizations: 61 H Number of LU factorizations: 73 ‘

Table 2: Eigenvalues calculated respectively by DDPSE, DPSE and SADPA from starting
values s = (k—1/2)(—=1+14), k =1: 10, and their measure of relative dominance
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DDPSE DPSE

Eigenvalues Dominance Eigenvalues Dominance
—0.0335 + 1.0787¢ 760.11 | —0.6120 + 0.3587¢ 12.40
—0.6120 + 0.3587¢ 1240 || —2.9445 + 4.8214¢ 6.85
—2.9445 4 4.82144 6.85 || —1.0829 + 0.8747: 3.78
—1.4463 + 1.4565¢ 3.58 || —1.4463 + 1.4565:¢ 3.58
—5.8148 + 4.87041 1.36 | —4.0233 4 4.21244 2.60
—5.5632 + 7.7510¢ 1.22 || —=5.74754 6.77617 1.43
—7.5416 + 6.2292; 1.07 | —5.8148 + 4.8704¢ 1.36
—6.4231 + 8.6949¢ 041 | —5.5632 + 7.7510: 1.22
—2.7460 + 0.0000¢ 0.31 | —7.5416 + 6.2292:; 1.07
—7.8864 + 10.3395¢ 0.06 | —6.9657 + 11.0840: 0.15

’ Number of LU factorizations: 88 H Number of LU factorizations: 70

Table 3: Eigenvalues calculated respectively by DDPSE and DPSE from starting values
sp=(k—1/2)(-1+81i/82), k=1:10

Eigenvalue Relative
Dominance
Real Imag m
-0.6120 | 0.3587 12.40
-2.9445 | 4.8214 6.85
-1.0829 | 0.8747 3.78
-1.4463 | 1.4565 3.58
-4.0233 | 4.2124 2.61
-5.7475 | 6.7761 1.43
-5.8148 | 4.8704 1.36
-5.5632 | 7.7510 1.22
-7.5416 | 6.2292 1.07
-7.8864 | 10.3395 0.06

Number of LU factorizations: 68

Table 4: Figenvalues calculated by DDPSE after only one step of DPSE from starting
values s, = (k—1/2)(=1+14), k=1:10
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