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Abstract

In this paper we give a new short proof of the local quadratic convergence
of the Dominant Pole Spectrum Eigensolver (DPSE). Also we introduce here
the Diagonal Dominant Pole Spectrum Eigensolver (DDPSE), another fixed-
point method that computes several eigenvalues of a matrix at a time, which
also has local quadratic convergence. From results of some experiments with
a large power system model, it is shown that DDPSE can also be used in
small-signal stability studies to compute dominant poles of a transfer function
of the type cT (A− sI)−1b, where b and c are vectors, by its own or combined
with DPSE. Besides DDPSE is also effective in finding low damped modes
of a large scale power system model.
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1. Introduction

A power system can be described as a coupled system of differential and
algebraic equations. The following matrix equation is obtained by linearizing
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the system model at an operating point:(
ẋ
0

)
=

(
J1 J2
J3 J4

)(
x
y

)
,

where J1, J2, J3, J4 are matrices, x is the vector of dynamical variables and

y is the vector of algebraic ones. The matrix J =

(
J1 J2
J3 J4

)
denotes the

Jacobian matrix of the system. Since y = −J−1
4 J3x, we have

ẋ =
(
J1 − J2J

−1
4 J3

)
x.

The matrix A = J1 − J2J
−1
4 J3 is called the state matrix of the system. For

large scale power systems J is very sparse, while A is not in general. We can
observe that, given a vector x, we can easily compute z = (A − λI)−1x by
solving the following algebraic system(

J1 J2
J3 J4

)(
z
w

)
=

(
x
0

)
. (1)

From that we note that we can compute eigenvalues of the state matrix A,
even without explicitly calculating it.

Knowledge of rightmost eigenvalues of A is essential in the power system
small-signal stability analysis. In the literature there are several papers that
use standard methods to compute rightmost eigenvalues of a state matrix
from Equation 1 [3, 10]. On the other hand, some authors prefer instead to
deal with the generalized eigenvalue problem Ju = λEu, where

E =

(
I 0
0 0

)
,

and I is the identity matrix [8]. However, this approach requires a non-
obvious strategy to control instability caused by the spurious eigenvalue at
infinity, for instance, if you use generalized Möbius transforms [1, 4]. The
landscape of small-signal stability analysis has changed a little when methods
based on transfer functions, like the Dominant Pole Algorithm (DPA) [5]
and the Dominant Pole Spectrum Eigensolver (DPSE) [6], have arisen in
literature. It was found that DPA, which computes a single eigenvalue at
a time, is actually a Newton’s method ([2], [9]). Furthermore, DPSE is
a fixed-point method that can compute several eigenvalues at a time, and
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it can be seen as a generalization of DPA in a certain way. In order to
calculate p eigenvalues by DPSE, you should solve p linear systems of the type
(J−µkE)z = w, k = 1 : p, at each step. On the other hand, in power system
stability studies, a suitable pre-ordering of the Jacobian matrix equations and
variables prevents large amounts of fill-in and thus its sparse LU factorization
is done with lower computational complexity. Moreover, DPSE converges
quadratically and a proof of its local quadratic convergence first appeared in
[2]. Nevertheless, here we give an easier proof, which can be seen in §2. We
will also show that a slight modification of DPSE yields a new fixed-point
method, the Diagonal Dominant-Pole Spectrum Eigensolver (DDPSE), that
also has local quadratic convergence, as discussed in §3. In the last section,
we see results obtained from the implementation of those two methods in
MATLAB. From these tests we verify that both methods really compute
dominant poles of a transfer function of the type cT (A− sI)−1b, where b and
c are vectors, besides being also effective in finding low damped modes of the
system. Summarizing, our paper makes the following contributions: it shows
a much easier proof of the local quadratic convergence of DPSE; it introduces
DDPSE, a new eigensolver, that also has local quadratic convergence; it
presents some performance results obtained from DPSE, DDPSE and SADPA
(Subspace Accelerated Dominant Pole Algorithm) when applied to a large
generalized eigenvalue problem. SADPA is part of a public software, which
can be seen in https://sites.google.com/site/rommes/software.

2. DPSE

The motivation for the Dominant Pole Spectrum Eigensolver (DPSE)
came from SISO dynamical systems (E, J,B,C,D) of the form{

Eẋ(t) = Jx(t) +Bu(t)
y(t) = CTx(t) +Du(t)

(2)

where J,E ∈ RN×N , E = diag([1, ..., 1, 0, ..., 0]); x(t) ∈ RN×1 is composed
by dynamical and algebraic variables, xd(t) and xa(t), which are respectively
associated with the unit and the null diagonal entries of E; B,C ∈ RN×1,
where BT =

(
BT

d BT
a

)
and CT =

(
CT

d CT
a

)
; u(t) ∈ R is the input, y(t) ∈ R is

the output, and D ∈ R. Suppose that there are n dynamical variables in the
system. If J1 = J(1 : n, 1 : n), J2 = J(1 : n, n+1 : N), J3 = J(n+1 : N, 1 : n)
and J4 = J(n + 1 : N, n + 1 : N), then that system is equivalent to the
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Figure 1: Sparse pattern of the Jacobian matrix that corresponds to a planning model of
the Brazilian Interconnected Power System (nz is the number of its nonzero entries)
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following one: {
ẋ(t) = Ax(t) + bu(t)
y(t) = cTx(t) + du(t)

where the matrix A = J1 − J2J
−1
4 J3, which is called the state matrix of the

system, b = Bd − J2J
−1
4 Ba, c = Cd − JT

3 J
−T
4 Ca and d = D − CT

a J
−1
4 Ba. The

corresponding transfer function h : C → C is defined as

h(s) = cT
(
sI −

(
J1 − J2J

−1
4 J3

))−1
b+ d. (3)

Simple calculation yields that

h(s) = CT (sE − J)−1B +D.

Note that, for any µ /∈ λ(A) and for any b ∈ Cn,(
(A− µI)−1b

0

)
= E (J − µE)−1

(
b
0

)
. (4)

Suppose that A ∈ Rn×n is diagonalizable, that is, A = PDP−1, where
P is an invertible matrix and D, a diagonal matrix. So, the spectrum of A,
denoted by λ(A), is the set of the diagonal entries of D. From now on we
suppose that every eigenvalue of A is simple.

Let b, c ∈ Rn such that cT (A − sI)−1b ̸= 0 for all s ∈ C − λ(A), and
cTPeke

T
kP

−1b ̸= 0 for k = 1 : n. If d = 0, from Equation 3,

h(s) =
n∑

k=1

Rk

dk,k − s
,

where Rk = cTPeke
T
kP

−1b, k = 1 : n.

Definition 1. A pole dk,k is called a dominant pole if it corresponds to a

relatively large mk =
|Rk|

|Re(dk,k)|
. mk is the measure for dominance of the

pole dk,k.

Remark 1. Suppose that, for some k ∈ {1, ...n}, dkk is a converged eigen-
value at step r. Then, the corresponding right and left vectors, xr and yr,
are such that

yTr xr ≈
eTkP

−1

eTkP
−1b

Pek
cTPek

=
1

cTPekeTkP
−1b

=
1

Rk

.

From that we can easily calculate the corresponding measure mk for domi-
nance of the pole.
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Now, since

(A− sI)−1b

cT (A− sI)−1b
=

Adj (A− sI)b

cTAdj (A− sI)b
and

(AT − sI)−1c

cT (A− sI)−1b
=

Adj (AT − sI)c

cTAdj (A− sI)b
,

we conclude that the functions f : C → Cn and g : C → Cn defined respec-
tively by

f(s) =

{
(A−sI)−1b

cT (A−sI)−1b
for s ∈ C− λ(A);

Pej
cTPej

for s = djj, j = 1 : n.
(5)

and

g(s) =

{
(AT−sI)−1c
cT (A−sI)−1b

for s ∈ C− λ(A);
P−T ej

bTP−T ej
for s = djj, j = 1 : n.

(6)

are entire functions (bear in mind that any entry of the Classical Adjoint of
(A− sI) is a sum of products of its elements).

Let S = (s1 ... sp)
T ∈ Cp, p ≤ n, and suppose that X(S), Y (S) ∈ Cn×p

are defined by X(S)ek = f(sk) and Y (S)ek = g(sk), for k = 1 : p, where
e1, ..., en are the canonical vectors.

Lemma 1. Let S0 =
(
dk1,k1 ... dkp,kp

)
, where dk1,k1 ... dkp,kp is a p-uple of dis-

tinct eigenvalues, 1 ≤ k1 < ... < kp ≤ n. Then, there is an open neighborhood
O of S0 so that Y (S)TX(S) is invertible for any S belonging to O.

Proof. The lemma follows because

Y (S0)
TX(S0) = diag

([
1

cTPek1e
T
k1
P−1b

, ...,
1

cTPekpe
T
kp
P−1b

])
, (7)

that is, Y (S0)
TX(S0) is invertible.

Let F : O → Cn×n defined by F (S) =
(
Y (S)TX(S)

)−1 (
Y (S)TAX(S)

)
.

We see that F is analytic. Since

F
((

dk1,k1 ... dkp,kp
)T)

= diag
([
dk1,k1 , ..., dkp,kp

])
,

every eigenvalue of F is simple for S belonging to an open subset Z of O.
Let G : Z → Cp be the function defined by G(S) = (λ1(F (S)) ... λp(F (S))),
where λ1(F (S)) < ... < λp(F (S)) are the eigenvalues of F (S) (for some order
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on the complex numbers). Observe that
(
dk1,k1 ... dkp,kp

)T
is a fixed point of

G. On the other hand, if si is not an eigenvalue for i = 1 : p, we conclude
that F (S) is equal to

diag(S)+
(
Y (S)TX(S)

)−1
eeTdiag

([
1

cT (A− s1I)−1b
, ...,

1

cT (A− spI)−1b

])
,

for Y (S)b = e, where e = ones(p, 1). In order to calculate the derivative of
G, we first see that

∂F

∂si

(
dk1,k1 , ..., dkp,kp

)
= eie

T
i − 1

cTPekie
T
ki
P−1b

veTi ,

where vT =
(
cTPek1e

T
k1
P−1b ... cTPekpe

T
kp
P−1b

)
. Therefore,

∂λk

∂si

(
dk1,k1 , ..., dkp,kp

)
= ⟨ ∂λk

∂ars

(
F
(
dk1,k1 , ..., dkp,kp

))
,
∂F

∂si

(
dk1,k1 , ..., dkp,kp

)
⟩.

Notice that
∂λk

∂ars

(
F
(
dk1,k1 , ..., dkp,kp

))
= eke

T
k .

Hence,

∂λk

∂si

(
dk1,k1 , ..., dkp,kp

)
= eTi ek −

1

cTPekie
T
ki
P−1b

eTi eke
T
k v = 0.

Definition 2 (DPSE). The fixed-point iteration applied to the function

G(S) = (λ1(F (S)) ... λp(F (S))) ,

where F (S) =
(
Y (S)TX(S)

)−1 (
Y (S)TAX(S)

)
, defines the Dominant Pole

Spectrum Eigensolver.

With this definition, we have just proved the following proposition:

Proposition 2 (DPSE converges at least quadratically). Let λ1, ..., λp be p

distinct eigenvalues of A. Then, there is a neighborhood V of (λ1 ... λp)
T such

that DPSE converges at least quadratically to (λ1 ... λp)
T for any S0 ∈ V .
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Remark 2. Suppose that DPSE has just calculated S(r) =
(
s
(r)
1 ... s

(r)
p

)T
from S(r−1), and X(S(r)) has not been computed yet. For any k = 1 : p, we
have that

AX(S(r−1))ek =

= (A− s
(r−1)
k I + s

(r−1)
k I)

(A− s
(r−1)
k )−1b

cT (A− s
(r−1)
k )−1b

=

=
b

cT (A− s
(r−1)
k )−1b

+ s
(r−1)
k X(S(r−1))ek.

Therefore, the relative error, ||(A − s
(r)
k )X(S(r−1))ek||/||X(S(r−1))ek||, be-

comes as follows:

|| b

cT (A−s
(r−1)
k )−1b

+ (s
(r−1)
k − s

(r)
k )X(S(r−1))ek||

||X(S(r−1))ek||
. (8)

Note that, if s
(r−1)
k tends to an eigenvalue, then cT (A − s

(r−1)
k )−1b tends to

zero, and so, X(S(r−1))ek is an approximation of an associated eigenvector.

3. DDPSE

−9 −8 −7 −6 −5 −4 −3 −2 −1 0

Figure 2: Partial spectrum of the state matrix

If the fixed-point method is only applied to the diagonal of the matrix
F (S), then a variant of the DPSE is created, which will be called here as the
Diagonal Dominant Pole Spectrum Eigensolver (DDPSE):

H
(
(s1 ... sp)

T
)

def
= diag (F (s1 ... sp)) = (s1 ... sp)

T+
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+diag

([
1

cT (A− s1I)−1b
, ...,

1

cT (A− spI)−1b

]) (
Y (S)TX(S)

)−1
e

where e = ones(p, 1) and si /∈ λ(A) for all i = 1 : p. Note that for i = 1 : p

1

cT (A− siI)−1b
=

det(A− siI)

cTAdj(A− siI)b
,

which is zero if si is an eigenvalue of A. So, we define

H
(
(λ1 ... λp)

T
)
= (λ1 ... λp)

T

if (λ1 ... λp)
T is a p-uple of distinct eigenvalues. Therefore, any p-uple of

distinct eigenvalues is a fixed-point of H.

Proposition 3 (DDPSE converges at least quadratically). Let λ1, λ2, ..., λp

be p distinct eigenvalues of A. Then, there is a neighborhood V of (λ1 ... λp)
T

such that, given any S0 ∈ V , DDPSE converges at least quadratically to
(λ1 ..., λp)

T .

Proof. Let λ1 = dk1,k1 , ..., λp = dkp,kp . Then,

∂H

∂si

(
(dk1,k1 ... dkp,kp)

)
= ei −

1

cTPekie
T
ki
P−1b

eie
T
i

(
Y (S)TX(S)

)−1
e.

From 7,
(
Y (S)TX(S)

)−1
= diag

([
cTPek1e

T
k1
P−1b, ..., cTPekpe

T
kp
P−1b

])
. So,

∂H

∂si

(
(dk1,k1 ... dkp,kp)

)
= 0.

Our test matrix J is sparse (density about 0.028%), of order N = 13251.
The pencil Jv = λEv, where E = diag(1, ..., 1, 0, ..., 0), corresponds to the
problem Ax = λx, where A = J1 − J2J

−1
4 J3 is of order n = 1664. This is

the Jacobian matrix that corresponds to a planning model of the Brazilian
Interconnected Power System and that had already used for tests in [8]. In
the tests with DPSE and DDPSE, we have used data that can be obtained
from a specific transfer function. From this, D = 0, and the input vector
B =

(
BT

d BT
a

)
and the output vector C =

(
CT

d CT
a

)
are as follows: B(524) =

B(1442) = 1, B(1884) = B(1918) = −1, and the others entries of B are
null; C(11558) = 26.5721, C(11559) = −13.1127, C(12502) = −29.2954,
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C(12503) = 3.7609 and these are all the non-zero elements of C. By using
MATLAB, we verify that CT

a J
−1
4 Ba = 0, and then d = 0. Note that, from

Equation 3, for any s /∈ λ(A), CT (J − sE)−1B = cT (A − sI)−1b, where
b = Bd − J2J

−1
4 Ba, c = Cd − JT

3 J
−T
4 Ca.

Suppose we start with p complex values: s(0) = (s
(0)
1 ... s

(0)
p )T ∈ Cp.

Let X = X(0) and Y = Y (0) be two matrices N × p, such that for j =
1 : p X(:, j) = (J − s

(0)
j E)−1B/CT (J − s

(0)
j E)−1B and Y (:, j) = (JT −

s
(0)
j E)−1C/CT (J − s

(0)
j E)−1B. Let V = V (0) and W = W (0) be two matrices

n× p such that, for j = 1 : p,

V (:, j) = (A− s
(0)
j I)−1b/cT (A− s

(0)
j I)−1b

and
W (:, j) = (AT − s

(0)
j I)−1c/cT (A− s

(0)
j I)−1b.

So, we have
W TV = Y TEX,

and for j = 1 : p

W TAV ej = W T (A− s
(0)
j I + s

(0)
j I)(A− s

(0)
j I)−1b/cT (A− s

(0)
j I)−1b =

= W T b/cT (A− s
(0)
j I)−1b+ s

(0)
j W TV ej = e/cT (A− s

(0)
j I)−1b+ s

(0)
j W TV ej,

where e = ones(p, 1). Therefore,

F = (W TV )−1W TAV = (W TV )−1evT + S,

where S = S(0) = diag(s(0)), and

vT =
(
v(0)
)T

=
(
1/cT (A− s

(0)
1 I)−1b ... 1/cT (A− s(0)p I)−1b

)
.

Note that, from Equation 4, we can use either DPSE or DDPSE to partially
solve Equation 2, that is, we can carry out all the computation with J , B
and C without explicitly computing A, b and c.

We have specified a relative error tolerance of 10−5 to both right and left
vectors. Here we have used

||(J − s
(k)
j E)X(k−1)ej||

||X(k−1)ej||
and

||(JT − s
(k)
j E)Y (k−1)ej||

||Y (k−1)ej||
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as the relative errors instead of using the equivalent formulae obtained from
Equation 8, for we do not want to compute b explicitly. Convergence is
achieved when both of these convergence criteria are satisfied. Suppose we
have just obtained the first converged value s

(k)
1 = λ1. Then, we save their

corresponding right and left generalized eigenvectors, X(k−1)e1 and Y (k−1)e1,
to the respective columns of X(r) and Y (r) for r ≥ k. In the case of a complex
converged value, we add one more column to X(r) and Y (r), with the right
and left generalized eigenvectors associated to its conjugate: s

(k)
p+1 = λ1. Note

that the respective columns of V (r) and W (r) are formed by the dynamical
variables of X(k−1)e1 and Y (k−1)e1, respectively. Those converged eigenvalues
can be deflated from the problem by this procedure. To see that, suppose
V e2 ≈ a1v1+a2v2, where v1 ≈ V (k−1)e1 and v2 is an eigenvector corresponding
to λ2. Hence,

AV e2 ≈ a1λ1v1 + a2λ2v2 ≈ a1(λ1 − λ2)V e1 + λ2V e2,

and so, (
W TV

)−1
W TAV e2 ≈ a1(λ1 − λ2)e1 + λ2e2.

Thus,

F =


λ1 × × · · · ×
0 λ2 × · · · ×
0 0 × · · · ×
...

...
... · · · ...

0 0 × · · · ×

 .

4. Numerical results

All the computed eigenvalues were actually complex conjugate pairs, but
only their positive imaginary values are listed in the following tables for
brevity. In Table 1 you see 7 eigenvalues calculated by DDPSE and DPSE
from starting values sk = k.(−1 + i), k = 1 : 7. There you can observe that
the number of LU factorizations required by DDPSE is about 13% smaller
than that required by DPSE. Also, DDPSE found six poles that have the
largest measures of relative dominance, while DPSE found four. However,
for k > 7, e.g., k = 10, DPSE had a better performance regarding the
number of LU factorizations than DDPSE. Table 2 compares the eigenvalues
calculated respectively by DDPSE, DPSE and SADPA from starting values
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sk = (k − 1/2)(−1 + i), k = 1 : 10. The Subspace Accelerated Dominant
Pole Algorithm (SADPA) was the algorithm chosen for comparison with
DPSE and DDPSE due to excellent results formerly obtained with our test
matrix, which was reported for instance in [7]. To this end, we have used
the script test dpa family.m as starting point, with options 3 (our sparse
matrix of order 13251) and 2 (SADPA), which is available at https://sites.
google.com/site/rommes/software. The default (maximum) number of
eigenvalues to be calculated by SADPA is ten. All the measures of relative
dominance of the eigenvalues obtained by SADPA were computed by DPSE.
In order to compare the results from the three methods we have used the same
(p =)10 initial shifts given in the left complex semi-plane: sr = r∗(−1+i)/2,
r = 1 : 2 : 20. You see that with those 10 initial shifts DDPSE did not
converge to −0.0335 ± 1.0787 i, which are the most dominant poles of the
system. On the other hand, our eigenvalue problem is so ill-conditioned
that if sk = (k − 1/2)(−1 + 81i/82), k = 1 : 10, are used instead of sk =
(k−1/2)(−1+ i), k = 1 : 10, our results will change a lot, as you see in Table
3. Note that the eigenvalues of A are very clustered around zero, according
to Figure 2. To improve DDPSE’s performance in respect to the number
of LU factorizations, we propose to carry out some steps of DPSE before
applying DDPSE. You see in Table 4 that after executing only one step of
DPSE the number of LU factorizations required by DDPSE lowered from 93
(Table 2) to 68. This initial procedure resulted in better initial estimates to
be used by DDPSE, which has only local convergence. Our experiments with
DPSE have shown that it has large basins of attraction. The tests have been
performed in the MATLAB R2011b 64 bits at a HP Compaq 6000 Pro, with
processor Intel Core 2 Duo E8400 3.00 GHz.
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DDPSE DPSE
Eigenvalues Dominance Eigenvalues Dominance

−0.0335 + 1.0787i 760.11 −0.0335 + 1.0787i 760.11
−0.5567 + 3.6097i 14.87 −0.6120 + 0.3587i 12.40
−0.6120 + 0.3587i 12.40 −2.9445 + 4.8214i 6.85
−0.4548 + 4.7054i 5.78 −1.2936 + 1.4028i 5.59
−1.2936 + 1.4028i 5.59 −1.0829 + 0.8747i 3.78
−0.9931 + 0.1082i 2.00 −1.4463 + 1.4565i 3.58
−7.5416 + 6.2292i 1.07 −4.0233 + 4.2124i 2.60

Number of LU factorizations: 60 Number of LU factorizations: 68

Table 1: Eigenvalues calculated respectively by DDPSE and DPSE from starting values
sk = k.(−1 + i), k = 1 : 7, and their measure of relative dominance

DDPSE DPSE SADPA
Eigenvalues Dominance Eigenvalues Dominance Eigenvalues Dominance

−0.6120 + 0.3587i 12.40 −0.0335 + 1.0787i 760.11 −0.0335 + 1.0787i 760.11
−2.9445 + 4.8214i 6.85 −0.6120 + 0.3587i 12.40 −0.5567 + 3.6097i 14.87
−1.8415 + 6.9859i 5.11 −2.9445 + 4.8214i 6.85 −0.1151 + 0.2397i 2.20
−1.4463 + 1.4565i 3.58 −1.4463 + 1.4565i 3.58 −0.5208 + 2.8814i 0.79
−4.0233 + 4.2124i 2.60 −4.0233 + 4.2124i 2.60 −0.0356 + 0.0000i 0.21
−5.7475 + 6.7761i 1.43 −5.7475 + 6.7761i 1.43 −0.1139 + 0.0000i 0.10
−5.8148 + 4.8704i 1.36 −5.8148 + 4.8704i 1.36 −0.1291 + 0.0000i 0.04
−6.9172 + 3.2292i 0.62 −5.5632 + 7.7510i 1.22 −0.1440 + 0.0000i 0.04
−3.1087 + 0.1476i 0.49 −7.5416 + 6.2292i 1.07 −0.1276 + 0.0000i 0.02
−8.0955 + 9.8277i 0.16 −6.9657 + 11.0840i 0.15

Number of LU factorizations: 93 Number of LU factorizations: 61 Number of LU factorizations: 73

Table 2: Eigenvalues calculated respectively by DDPSE, DPSE and SADPA from starting
values sk = (k − 1/2)(−1 + i), k = 1 : 10, and their measure of relative dominance
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DDPSE DPSE
Eigenvalues Dominance Eigenvalues Dominance

−0.0335 + 1.0787i 760.11 −0.6120 + 0.3587i 12.40
−0.6120 + 0.3587i 12.40 −2.9445 + 4.8214i 6.85
−2.9445 + 4.8214i 6.85 −1.0829 + 0.8747i 3.78
−1.4463 + 1.4565i 3.58 −1.4463 + 1.4565i 3.58
−5.8148 + 4.8704i 1.36 −4.0233 + 4.2124i 2.60
−5.5632 + 7.7510i 1.22 −5.7475 + 6.7761i 1.43
−7.5416 + 6.2292i 1.07 −5.8148 + 4.8704i 1.36
−6.4231 + 8.6949i 0.41 −5.5632 + 7.7510i 1.22
−2.7460 + 0.0000i 0.31 −7.5416 + 6.2292i 1.07
−7.8864 + 10.3395i 0.06 −6.9657 + 11.0840i 0.15

Number of LU factorizations: 88 Number of LU factorizations: 70

Table 3: Eigenvalues calculated respectively by DDPSE and DPSE from starting values
sk = (k − 1/2)(−1 + 81i/82), k = 1 : 10

Eigenvalue Relative
Dominance

Real Imag m
-0.6120 0.3587 12.40
-2.9445 4.8214 6.85
-1.0829 0.8747 3.78
-1.4463 1.4565 3.58
-4.0233 4.2124 2.61
-5.7475 6.7761 1.43
-5.8148 4.8704 1.36
-5.5632 7.7510 1.22
-7.5416 6.2292 1.07
-7.8864 10.3395 0.06

Number of LU factorizations: 68

Table 4: Eigenvalues calculated by DDPSE after only one step of DPSE from starting
values sk = (k − 1/2)(−1 + i), k = 1 : 10
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