
Efficient computation of Bézier curves from their

Bernstein-Fourier representation

Licio Hernanes Bezerra

Universidade Federal de Santa Catarina, Departamento de Matemática, Florianópolis,

SC 88040-900, Brazil

Abstract

This paper presents a new method of computation of Bézier curves of any

order. This method is based on the Bernstein-Fourier representation of a

Bézier curve and utilizes Fast Fourier Transforms to change from the Bern-

stein basis to a new one that provides efficient computation. For 2 ≤ n ≤ 8,

where n is the number of control points, this method is still more rapid than

the VS method, which is already very fast.

Keywords: Bernstein matrix, Bézier curve, Vandermonde matrix, FFT

2000 MSC: 15B05, 65D17

1. Introduction

Let P0, ..., Pn−1 be n distinct points of the plane. The Bézier curve of

degree n− 1 defined by these points is the set of the points B(s), s ∈ [0, 1],

where

B(s) = (x(s), y(s)) =
n−1
∑

k=0

(

n− 1

k

)

sk(1− s)n−1−kPk.

Email address: licio@mtm.ufsc.br (Licio Hernanes Bezerra)

Preprint submitted to Applied Mathematics and Computation June 3, 2015

The polynomials bk,n−1(s) =
(

n−1

k

)

sk(1− s)n−1−k are known as Bernstein ba-

sis polynomials of degree n-1. Note that a method to evaluate a Bézier curve

is in fact a method to evaluate a polynomial written in the Bernstein basis.

Bézier curves play a fundamental role in Computed-Aided Geometric Design

area, where the de Casteljau method is the most common method for this

evaluation [6]. Numerically speaking, de Casteljau method is very stable.

However, it demands O(n2) algebraic operations for each s. Recently, sev-

eral alternative methods have been developed which require fewer operations.

Computationally speaking these methods are founded on a change of poly-

nomial basis followed by an efficient algorithm to evaluate the polynomial in

the new form. For instance, we have the VS method [8] as well as several

methods that have used generalized Ball bases [4, 5, 7, 9], which have arisen

after A. Ball had considered the set {(1−s)2, 2s(1−s)2, 2s2(1−s), s2} as a ba-

sis for the cubic polynomials [1]. Also there are examples of matrix-oriented

methods, where changes of basis involve some matrix theory [2, 3]. If we only

consider the time consumption, from [2] we arrive at the conclusion that the

VS method [8] is the most efficient when compared with the de Casteljau

method, the Wang-Ball method [9], the Said-Ball method [9], the most effi-

cient Pascal matrix method described in [3] and the Hankel matrix method

explained in [2]. Here we introduce a new method to evaluate a Bezier curve

of order n − 1 which is even faster. From Fast Fourier Transforms (FFT),

the curve becomes as follows:

B(s) =
n−1
∑

k=0

Qkuk(s),

2

where uk(s) = (1 + s(ωk − 1))n−1 for k = 0 : n − 1, and ω = e
−2πi

n . Since

B(s) is a curve in R
2, we should have Qk = Qn−k for k 6= 0, n/2 − 1, if n is

even (otherwise, k 6= 0). Its performance is discussed here by comparing it

with the de Casteljau and the VS methods.

2. Vandermonde matrix as a conversion matrix

Consider a Bézier curve B of degree n − 1 defined by n given points

P0 = (x0, y0), P1 = (x1, y1), ..., Pn−1 = (xn−1, yn−1) in R
2. Let Bn(s) be

the n × n lower triangular matrix such that (Bn)ij (s) = bj−1,i−1(s) for each

n ≥ i ≥ j ≥ 1, that is,

Bn(s) =



















1 0 0 ... 0

1− s
(

1

1

)

s 0 ... 0

(1− s)2
(

2

1

)

(1− s)s
(

2

2

)

s2 ... 0

...
...

...
. . . 0

(1− s)n−1
(

n−1

1

)

(1− s)n−2s
(

n−1

2

)

(1− s)n−3s2 ...
(

n−1

n−1

)

sn−1



















.

Bn(s) is called a Bernstein matrix. Recall that the Bernstein polynomials

b0,n−1(s), ..., bn−1,n−1(s) form a basis of Pn−1(R), the vector space of the real

polynomial functions of degree less than or equal to (n−1). Let Z be the n×2

matrix defined by Z(k, 1) = xk−1 and Z(k, 2) = yk−1 for all k ∈ {1, ..., n}.

Let en = (0 ... 0 1)T ∈ Cn. Thus,

B(s) = eTnBn(s)Z.

3

Given (α0, ..., αn−1) ∈ Cn, let W = W (α0, ..., αn−1) the n× n Vandermonde

matrix defined by
















1 1 · · · 1

α0 α1 · · · αn−1

...
... · · ·

...

αn−1

0
αn−1

1
· · · αn−1

n−1

















.

Suppose that αi 6= αj for 0 ≤ i < j ≤ n−1. Then W is an invertible matrix.

Therefore, we have

B(s) = eTnBn(s)W
(

W−1Z
)

.

It is not difficult to see that

eTnBn(s)W =
(

(1− s+ α0s)
n−1 · · · (1− s+ αn−1s)

n−1
)

.

A good choice for W is the Fourier matrix: W = W (1, ω, ..., ωn−1), where

ω = e
−2πi

n . Hence, the operation W−1Z can be done in an accurate way and

in O(n log n) arithmetic operations. In MATLAB the matrix U = W−1Z is

easily computed: U = ifft(Z).

Now, let Q0 = (r0, s0), Q1 = (r1, s1), ..., Qn−1 = (rn−1, sn−1), where

rk = U(k + 1, 1) and sk = U(k + 1, 2) for all k ∈ {0, ..., n − 1}. Hence, we

can conclude that

B(s) =

n−1
∑

k=0

Qk(1 + s(ωk − 1))n−1, s ∈ [0, 1]. (1)

3. Numerical Results

Let P0 = (x0, y0), ..., Pn−1 = (xn−1, yn−1) be n distinct points.

4

The de Casteljau algorithm evaluates polynomials in the form

n−1
∑

k=0

(

n− 1

k

)

Pks
k(1− s)n−k−1.

It demands exactly n(n − 1) products and 2n(n− 1) additions for each s ∈

(0, 1) as we can see in the following lines of MATLAB code:

function [C1 C2] = casteljau(Z,s)

%CASTELJAU(Z,s) De Casteljau method.

% CASTELJAU(Z,s) is the Bezier curve defined by Z at t=s

n = size(Z,1);

b1 = x;

b2 = y;

for k = 2:n

for r = n:-1:k

b1(r) = b1(r-1) + s * (b1(r) - b1(r-1));

b2(r) = b2(r-1) + s * (b2(r) - b2(r-1));

end

end

C1 = b1(n);

C2 = b2(n);

The VS algorithm evaluates polynomials in the form

n−1
∑

k=0

Vks
k(1− s)n−k−1,

where Vk =
(

n−1

k

)

Pk. This algorithm consists of 2n− 1 products and 2n− 1

additions for each s ∈ (0, 1) (see the algorithm in [5]).

5

Let Z be the n×2 matrix such that Z(k, :) = (xk−1 yk−1). Then, our algo-

rithm first calculates U = ifft(Z), which requires O(n logn) operations, and

afterwards it evaluates B(s) according to Equation 1. Since the nth power

of a number can be found in O(logn) operations, all computation requires

O(n logn) operations. However, we can reduce the time of computation of

Equation 1 as follows. Suppose, for instance, that s = 0 : 1/128 : 1 is a parti-

tion of the interval [0,1] in 128 equal subintervals, that is, s(j) = (j− 1)/128

for j = 1 : 129. Let t = 1 : −1 : 1/2 + 1/128, that is, the elements of s

that are greater than 1/2 in reverse order. Consider an integer k such that

0 < k < n/2. Since ωn−k = ωk we have for all s < 1/2 that

(

ωks+ (1− s)
)n−1

= ωkn−k
(

s+ (1− s)/ωk
)n−1

=

= ωk

(

s+ ωk(1− s)
)n−1

= ωk

(

ωkt+ (1− t)
)n−1

.

Therefore, since Qn−k = Qk for 0 < k < n/2, the calculation of B(s) for

s = 0 : 1 depends basically on the computation of
(

ωks+ (1− s)
)n−1

for

0 ≤ s < 1/2 and for 0 < k < n/2, which yields a significant reduction of the

computational time.

Without loss of generality, we have used the MATLAB function rand

in order to generate n test control points: A = rand(n, 2). Hence, the

coordinates of the control points are all positive, and also less than or equal

to 1. In Table 1 we can compare the average times to compute Bézier curves

of several orders by using our method, VS method and de Casteljau method.

The results have been averaged over 1000 runs. The experiments have been

run in a MacBook Pro 5.5 with a 2.26 GHz Intel Core 2 Duo processor under

a 64-bit MATLAB, version R2011b.

6

Table 1: Mean run time of computation in seconds of 129 points of a Bézier curve of degree

N-1 by three different methods: our Algorithm (F), VS (V), and de Casteljau (C). NC

means non-convergence.

N Time (F) Time (V) Time (C)

2 6.7169e-05 1.8267e-04 3.5330e-04

3 1.1026e-04 1.9017e-04 3.8008e-04

4 1.5732e-04 2.4685e-04 4.4755e-04

5 1.7473e-04 2.5436e-04 5.1001e-04

6 2.1299e-04 2.6647e-04 5.8470e-04

7 2.3539e-04 2.7248e-04 6.5651e-04

8 2.7500e-04 2.8284e-04 7.5417e-04

9 2.9945e-04 2.9454e-04 8.4648e-04

16 5.3785e-04 3.6302e-04 0.0018

32 0.0011 5.2298e-04 0.0059

64 0.0024 8.5407e-04 0.0215

128 0.0050 0.0017 0.0874

256 0.0106 0.0039 0.3428

512 0.0229 0.0123 1.3698

1024 0.0519 0.0400 5.4491

2048 0.1171 0.1391 (NC) 21.9483

7

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

de Casteljau
VS
Fourier

Figure 1: Fourier versus VS versus de Casteljau

4. Conclusions

The data in Table 1 can also be seen in Figure 1, where they are rep-

resented in logarithmic scale. There we see that our method works better

than VS for n = 2 : 8 and better again for n = 2048. We have done tests

for various n > 2048, and so far our method has worked better than the VS

method. However, the VS method has not converged for n > 1024. This is

certainly due to the fact that some binomial coefficients needed to convert Pk

into Vk are greater than 1015. MATLAB gives a warning message saying that

those coefficients are accurate to 15 digits. On the other hand, our method

is as accurate as the de Casteljau method. For instance, if F and C are two

sets of 129 points obtained from the computation of a Bézier curve of order

511 by our method and the de Casteljau method respectively, the norm of

the difference between F and C is about 10−14. For future work we intend

to examine shape preserving properties and other properties associated with

8

these bases formed by pairs of complex conjugate polynomials (see [2]).

[1] A. A. Ball, CONSURF, Part one: Introduction to conic lofting tile,

Comput. Aided Design 6 (1974) 243-249.

[2] L. H. Bezerra, Vandermonde Factorizations of a Regular Hankel Matrix

and Their Application to the Computation of Bézier Curves, SIAM J.

Matrix Anal. & Appl. 33 (2012) 411-432.

[3] L. H. Bezerra and L. K. Sacht, On computing Bézier curves by Pascal

matrix methods, Appl. Math. Comput. 217 (2011) 10118-10128.

[4] J. Delgado and J. M. Peña, A shape preserving representation with an

evaluation algorithm of linear complexity, Comput. Aided Geom. D. 20

(2003) 1–10.

[5] J. Delgado and J. M. Peña, On efficient algorithms for polynomial eval-

uation in CAGD, Monogr. Semin. Mat. Garćıa de Galdeano 31 (2004)

111–120.

[6] G. Farin, Curves and Surfaces for Computed Aided Geometric Design:

A Practical Guide, 3rd ed.. Academic Press, New York, 1993.

[7] H. B. Said, Generalized Ball curve and its recursive algorithm, ACM

Trans. Graph. 8 (1989) 360–371.

[8] L. L. Schumaker and W. Volk, Efficient evaluation of multivariate poly-

nomials, Comput. Aided Geom. D. 3 (1986) 149–154.

[9] H. Shi-Min, W. Guo-Zhao and J. Tong-Guang, Properties of two types

of generalized Ball curves, Comput. Aided Design 28 (1996) 125–133.

9

