Efficient computation of Bézier curves from their
Bernstein-Fourier representation

Licio Hernanes Bezerra

Universidade Federal de Santa Catarina, Departamento de Matemdtica, Floriandpolis,

SC 88040-900, Brazil

Abstract

This paper presents a new method of computation of Bézier curves of any
order. This method is based on the Bernstein-Fourier representation of a
Bézier curve and utilizes Fast Fourier Transforms to change from the Bern-
stein basis to a new one that provides efficient computation. For 2 <n <8,
where n is the number of control points, this method is still more rapid than
the VS method, which is already very fast.

Keywords: Bernstein matrix, Bézier curve, Vandermonde matrix, FFT

2000 MSC: 15B05, 65D17

1. Introduction

Let Py, ..., P,_1 be n distinct points of the plane. The Bézier curve of
degree n — 1 defined by these points is the set of the points B(s), s € [0, 1],

where
n—1

B(s) = (x(s),y(s)) = > (" ; 1)sk(1 —)"k

k=0

Email address: licio@mtm.ufsc.br (Licio Hernanes Bezerra)

Preprint submitted to Applied Mathematics and Computation June 3, 2015

The polynomials by ,,_1(s) = (", ')s*(1 — s)""17* are known as Bernstein ba-

sis polynomials of degree n-1. Note that a method to evaluate a Bézier curve
is in fact a method to evaluate a polynomial written in the Bernstein basis.
Bézier curves play a fundamental role in Computed-Aided Geometric Design
area, where the de Casteljau method is the most common method for this
evaluation [6]. Numerically speaking, de Casteljau method is very stable.
However, it demands O(n?) algebraic operations for each s. Recently, sev-
eral alternative methods have been developed which require fewer operations.
Computationally speaking these methods are founded on a change of poly-
nomial basis followed by an efficient algorithm to evaluate the polynomial in
the new form. For instance, we have the VS method [8] as well as several
methods that have used generalized Ball bases [4, 5, 7, 9], which have arisen
after A. Ball had considered the set {(1—s)?2,2s(1—s5)?,2s?(1—s), s’} as a ba-
sis for the cubic polynomials [1]. Also there are examples of matrix-oriented
methods, where changes of basis involve some matrix theory [2, 3]. If we only
consider the time consumption, from [2] we arrive at the conclusion that the
VS method [8] is the most efficient when compared with the de Casteljau
method, the Wang-Ball method [9], the Said-Ball method [9], the most effi-
cient Pascal matrix method described in [3] and the Hankel matrix method
explained in [2]. Here we introduce a new method to evaluate a Bezier curve
of order n — 1 which is even faster. From Fast Fourier Transforms (FFT),

the curve becomes as follows:

—27i

where u(s) = (1 +s(w* —1))" 1 fork=0:n—1,and w = e » . Since
B(s) is a curve in R? we should have Q, = @, for k # 0,n/2 — 1, if n is
even (otherwise, k # 0). Its performance is discussed here by comparing it

with the de Casteljau and the VS methods.

2. Vandermonde matrix as a conversion matrix

Consider a Bézier curve B of degree n — 1 defined by n given points
P() = (l’o,yo), Pl = (Z’l,yl), ceey Pn—l = (xn—layn—l) in Rz. Let Bn(S) be
the n x n lower triangular matrix such that (B,); (s) = bj-1,-1(s) for each

n >1 > 7 > 1, that is,

1 0 0 0
1—s (1)s 0 0
Bu(s)=1 (1-s)? G)(1=s)s (5)s? 0
: 0

e L G [I L M () [C IS L N () P

By, (s) is called a Bernstein matrix. Recall that the Bernstein polynomials
bo.n—1(8), s bp—1,n—1(s) form a basis of P,,_;(R), the vector space of the real
polynomial functions of degree less than or equal to (n—1). Let Z be the nx2
matrix defined by Z(k,1) = zx_; and Z(k,2) =y, for all k € {1,....,n}.
Let e, = (0...01)T € C*. Thus,

B(s) = el B,(s)Z.

Given (g, ...,ap,—1) € C", let W = W(ay, ..., @y—1) the n X n Vandermonde

matrix defined by

1 1 1

Qg 651 Op—1

n—1 n—1 n—1
Qg Qg BN €

Suppose that o; # o for 0 < ¢ < j <n—1. Then W is an invertible matrix.
Therefore, we have

B(s) = e) Bu(s)W (W™'Z).

n

It is not difficult to see that

erBa(s)W = (1=s+aps)" "+ (1= s+ an15)"").

n

A good choice for W is the Fourier matrix: W = W(1,w,...,w" 1), where
w=e . Hence, the operation W~!Z can be done in an accurate way and
in O(nlogn) arithmetic operations. In MATLAB the matrix U = W7 is
easily computed: U =if ft(Z).

Now, let Qo = (10,80), @1 = (r1,81), vy @no1 = (rn_1,8,-1), wWhere
r, = U(k+1,1) and s = U(k + 1,2) for all k € {0,...,n — 1}. Hence, we

can conclude that

3. Numerical Results

Let Py = (x0,%0) -, Pno1 = (Tn_1,Yn—1) be n distinct points.

The de Casteljau algorithm evaluates polynomials in the form

n—1

3 (" . 1) Posh(1 — s)mk-L.

k=0
It demands exactly n(n — 1) products and 2n(n — 1) additions for each s €
(0,1) as we can see in the following lines of MATLAB code:

function [C1 C2] = casteljau(Z,s)
%CASTELJAU(Z,s) De Casteljau method.
%» CASTELJAU(Z,s) is the Bezier curve defined by Z at t=s

n = size(Z,1);

bl = x;
b2 =y;
for k = 2:n

for r = n:-1:k

b1(r) = bl(r-1) + s * (bi(r) - bi(r-1));
b2(r) = b2(r-1) + s * (b2(r) - b2(r-1));
end
end
Cl = bi(n);
C2 = b2(n);

The VS algorithm evaluates polynomials in the form
n—1
Z Vies® (1 — s)n =+t
k=0

where V,, = ("gl)Pk. This algorithm consists of 2n — 1 products and 2n — 1
additions for each s € (0, 1) (see the algorithm in [5]).

b}

Let Z be the n x 2 matrix such that Z(k,:) = (xx_1 yx—1). Then, our algo-
rithm first calculates U = i f ft(Z), which requires O(nlogn) operations, and
afterwards it evaluates B(s) according to Equation 1. Since the nth power
of a number can be found in O(logn) operations, all computation requires
O(nlogn) operations. However, we can reduce the time of computation of
Equation 1 as follows. Suppose, for instance, that s = 0:1/128 : 1 is a parti-
tion of the interval [0,1] in 128 equal subintervals, that is, s(j) = (j —1)/128
for j =1:129. Let t = 1: —1:1/2+ 1/128, that is, the elements of s
that are greater than 1/2 in reverse order. Consider an integer k such that

0 < k < n/2. Since w"* = wk we have for all s < 1/2 that

(whs+ (1 - s))n =R (s+(1- s)/wk)n_1 =

= wF (s +wh(1— s)>n_1 = Wk (Et +(1— t))n_l.

Therefore, since Q,_r = Qi for 0 < k < n/2, the calculation of B(s) for
s = 0 : 1 depends basically on the computation of (w*s+ (1 — s))n_1 for
0 <s<1/2and for 0 <k < n/2, which yields a significant reduction of the
computational time.

Without loss of generality, we have used the MATLAB function rand
in order to generate n test control points: A = rand(n,2). Hence, the
coordinates of the control points are all positive, and also less than or equal
to 1. In Table 1 we can compare the average times to compute Bézier curves
of several orders by using our method, VS method and de Casteljau method.
The results have been averaged over 1000 runs. The experiments have been
run in a MacBook Pro 5.5 with a 2.26 GHz Intel Core 2 Duo processor under
a 64-bit MATLAB, version R2011b.

Table 1: Mean run time of computation in seconds of 129 points of a Bézier curve of degree
N-1 by three different methods: our Algorithm (F), VS (V), and de Casteljau (C). NC

means non-convergence.

N Time (F) | Time (V) Time (C)
2 6.7169e-05 | 1.8267e-04 3.5330e-04
3 1.1026e-04 | 1.9017e-04 3.8008e-04
4 1.5732e-04 | 2.4685e-04 4.4755e-04
5 1.7473e-04 | 2.5436e-04 5.1001e-04
6 2.1299e-04 | 2.6647e-04 5.8470e-04
7 2.3539e-04 | 2.7248e-04 6.5651e-04
8 2.7500e-04 | 2.8284e-04 7.5417e-04
9 2.9945e-04 | 2.9454e-04 8.4648e-04
16 | 5.3785e-04 | 3.6302e-04 0.0018
32 0.0011 5.2298e-04 0.0059
64 0.0024 8.5407e-04 0.0215
128 0.0050 0.0017 0.0874
256 0.0106 0.0039 0.3428
512 0.0229 0.0123 1.3698
1024 0.0519 0.0400 5.4491
2048 0.1171 0.1391 (NC) 21.9483

10°

10° . L L . L .
10° 10! 10° 10° 10"

Figure 1: Fourier versus VS versus de Casteljau

4. Conclusions

The data in Table 1 can also be seen in Figure 1, where they are rep-
resented in logarithmic scale. There we see that our method works better
than VS for n = 2 : 8 and better again for n = 2048. We have done tests
for various n > 2048, and so far our method has worked better than the VS
method. However, the VS method has not converged for n > 1024. This is
certainly due to the fact that some binomial coefficients needed to convert Py
into Vj, are greater than 10'°. MATLAB gives a warning message saying that
those coefficients are accurate to 15 digits. On the other hand, our method
is as accurate as the de Casteljau method. For instance, if F' and C are two
sets of 129 points obtained from the computation of a Bézier curve of order
511 by our method and the de Casteljau method respectively, the norm of
the difference between I’ and C' is about 107, For future work we intend

to examine shape preserving properties and other properties associated with

these bases formed by pairs of complex conjugate polynomials (see [2]).

1]

A. A. Ball, CONSURF, Part one: Introduction to conic lofting tile,
Comput. Aided Design 6 (1974) 243-249.

L. H. Bezerra, Vandermonde Factorizations of a Regular Hankel Matrix
and Their Application to the Computation of Bézier Curves, STAM J.
Matrix Anal. & Appl. 33 (2012) 411-432.

L. H. Bezerra and L. K. Sacht, On computing Bézier curves by Pascal
matrix methods, Appl. Math. Comput. 217 (2011) 10118-10128.

J. Delgado and J. M. Pena, A shape preserving representation with an
evaluation algorithm of linear complexity, Comput. Aided Geom. D. 20

(2003) 1-10.

J. Delgado and J. M. Pena, On efficient algorithms for polynomial eval-
uation in CAGD, Monogr. Semin. Mat. Garcia de Galdeano 31 (2004)
111-120.

G. Farin, Curves and Surfaces for Computed Aided Geometric Design:

A Practical Guide, 3rd ed.. Academic Press, New York, 1993.

H. B. Said, Generalized Ball curve and its recursive algorithm, ACM
Trans. Graph. 8 (1989) 360-371.

L. L. Schumaker and W. Volk, Efficient evaluation of multivariate poly-
nomials, Comput. Aided Geom. D. 3 (1986) 149-154.

H. Shi-Min, W. Guo-Zhao and J. Tong-Guang, Properties of two types
of generalized Ball curves, Comput. Aided Design 28 (1996) 125-133.

