MTM510058 - Análise Funcional Aplicada Primeira Prova

Nome:			
Assinatura:			

- 1. (2.0 Pontos) Seja X um espaço de Banach e S um subconjunto de X. Mostre que S é limitado se e somente se f(S) é limitado para cada $f \in X^*$. Dica: use o Princípio da Limitação Uniforme.
- 2. (2.0 Pontos) Seja X um espaço vetorial normado de dimensão infinita, $B_X = \{x \in X \mid ||x|| \le 1\}$ e $S_X = \{x \in X \mid ||x|| = 1\}$. Prove que o fecho de S_X na topologia fraca $\sigma(X, X^*)$ é igual a S_X .
- 3. (2.0 Pontos) Seja X um espaço vetorial normado, $(x_n)_{n\geq 1}$ uma sequencia em X e $x\in X$ tais que $x_n\rightharpoonup x$. Mostre que $\sigma_n\rightharpoonup x$, onde

$$\sigma_n := \frac{1}{n} \sum_{k=1}^n x_k \,, \qquad n \ge 1.$$

- 4. (2.0 Pontos) Mostre que se X é um espaço de Banach reflexivo, então o seu dual X^* é reflexivo.
- 5. (2.0 Pontos) Seja X um espaço de Banach. Para $M \subset X$ e $N \subset X^*$ subespaços vetoriais defina

$$M^{0} = \{ f \in X^{*} \mid f(x) = 0 \ \forall x \in M \}, \qquad N^{+} = \{ x \in X \mid f(x) = 0 \ \forall f \in N \}.$$

Mostre que

$$\left(M^0\right)^+ = \overline{M},$$

onde o fecho é tomado na topologia forte de X.

Prof. Maicon Marques Alves Florianópolis, 17 de abril de 2024.