MTM3422-Álgebra Linear II

2025.02

Primeira Lista

Prof. M. Marques Alves

UFSC

- 1. Em cada item, determine o produto escalar $u \cdot v$ dos vetores $u \in v$.
 - (a) u = (-3, 4) e v = (5, -2)
- (b) u = (6, -1) e v = (1/2, -4)

(c) u = (2,3) e v = (0,0)

- (d) u = (1, -2, -3) e v = (0, 1, 0)
- (e) u = (3, 2, -1) e v = (1, 0, 6)
- (f) u = (1, 0, 2, 1, 8, 5/4) e v = (0, 1, -1, 5, 0, 4/5)
- 2. Determine um vetor u=(x,y,z) satisfazendo $u\cdot v_1=4,\ u\cdot v_2=6$ e $u\cdot v_3=2,$ onde $v_1=(1,2,-3),\ v_2=(3,-1,-1)$ e $v_3=(2,-2,0).$
- 3. Em cada item, verifique se os vetores u e v são ortogonais (recorde que u e v são ditos ortogonais quando $u \cdot v = 0$). Nos quatro primeiros itens, faça um esboço geométrico no plano dos vetores u e v.
 - (a) u = (2,3) e v = (-3,2)
 - (b) u = (5, -1) e v = (0, 0)
 - (c) u = (3,1) e v = (1,-1)
 - (d) u = (4,3) e v = (1,-4/3)
 - (e) u = (2, -1, 0) e v = (0, 0, 7)
 - (f) u = (2, -1, 4) e v = (0, -2, 1/2)
 - (g) u = (0, 1, 2, -5) e v = (1, 0, 5, 2)
 - (h) u = (1, 0, 2, 1, 8, 5/4) e v = (0, 1, -1, 5, 0, -12/5)
- 4. Determine um vetor não-nulo de \mathbb{R}^3 que seja simultaneamente ortogonal aos vetores u=(1,1,2), v=(5,1,3) e w=(2,-2,-3).
- 5. Em cada caso, determine um valor de m para que os vetores sejam ortogonais.
 - (a) u = (3m, 2, -m) e v = (-4, 1, 5)
- (b) u = (0, m 1, 4) e v = (5, m 1, -1)
- 6. Determine a *norma* de cada um dos vetores u e v do Exercício 1. Considere a norma de um vetor $u = (x_1, x_2, \dots, x_n)$ como $||u|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$.
- 7. Determine um valor de c para que ||v|| = 7, onde v = (6, -3, c).
- 8. Verifique quais dos seguintes vetores são unitários.

$$v_1 = (0, 1/8, 5/8, 3/8, -4/8, 3/8, -1/8, 0, 1/8, -1/8, 1/8),$$

- $v_2 = (1, 1, 1),$
- $v_3 = (2/3, -2/3, 1/3).$

- 9. Use as propriedades da norma para verificar que se u é um vetor não-nulo, então o vetor $\frac{u}{\|u\|}$ é unitário. Escreva os vetores unitários do Execício 8 na forma $\frac{u}{\|u\|}$.
- 10. Verifique que cada conjunto A, B e C abaixo forma um conjunto ortogonal de vetores.
 - (a) $A = \{(1, 2, -3), (3, 0, 1), (1, -5, -3)\}$
 - (b) $B = \{(\sqrt{3}, 1), (-1, \sqrt{3})\}$
 - (c) $C = \{(-2,1,1), (0,-1,1), (1,1,1)\}$
- 11. Obtenha um conjunto ortonormal de vetores a partir de cada um dos conjuntos A, B e C do Exercício 10. Dica: use o Exercício 9.
- 12. Em cada um dos casos abaixo, determine se os vetores $u, v \in w$ formam um conjunto ortogonal, ortonormal ou nenhum dos dois.
 - (a) u = (1, 2, 1), v = (1, -1, 1) e w = (-1, 1, 2)
 - (b) $u = (a, b, c), v = (-b, a, 0) \in w = (-ac, -bc, a^2 + b^2)$
 - (c) u = (2/7, 6/7, 3/7), v = (3/7, 2/7, -6/7) e w = (6/7, -3/7, 2/7)
- 13. Determine $a, b \in c$ para que o conjunto $\beta = \{(1, -3, 2), (2, 2, 2), (a, b, c)\}$ seja uma base ortogonal de \mathbb{R}^3 . A partir de β , construa uma base ortonormal.
- 14. Considere a base ortonormal de \mathbb{R}^5

$$\alpha = \left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0 \right), \left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0, 0 \right), \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0, 0 \right), \left(0, 0, 0, 1, 0 \right), \left(0, 0, 0, 0, 1 \right) \right\}$$

Faça o que se pede:

- (a) Verifique que os vetores da base α são mutuamente ortogonais e unitários.
- (b) Encontre as coordenadas do vetor $v=(100,\pi,\sqrt{2},-1,0)$ na base α . Dica: use o fato que se $\{v_1,v_2,\ldots,v_n\}$ é uma base ortonormal, então as coordenadas de um vetor v são dadas por $v\cdot v_1,v\cdot v_2,\ldots,v\cdot v_n$, ou seja, pelos Coeficientes de Fourier de v.
- 15. Verifique a validade da Desigualdade de Cauchy-Schwarz $|u \cdot v| \leq ||u|| ||v||$ para os vetores $u \in v$ em cada item do Exercício 1.
- 16. Em cada caso, determine o *ângulo* entre os vetores u e v. Recorde que o ângulo θ entre u e v é definido por $\theta = \arccos \frac{u \cdot v}{\|u\| \|v\|}$.
 - (a) u = (2, 1, 3) e v = (6, 3, 9)
- (b) u = (2, -3) e v = (3, 2)

(c) u = (4, 1) e v = (3, 2)

- (d) u = (-2, 3, 1) e v = (1, 2, 4)
- (e) u = (1, 1, 1, 1) e v = (1, 1, 0, 0)
- 17. Para cada par de vetores u e v no Exercício 16, determine a projeção ortogonal de u em v. Recorde que a projeção ortogonal de u em v é definida por $\operatorname{proj}_v u = \frac{u \cdot v}{\|v\|^2} v$. Em cada caso, verifique também que os vetores $u \operatorname{proj}_v u$ e v são ortogonais, isto é, verifique que $(u \operatorname{proj}_v u) \cdot v = 0$.

18. Considere o produto interno

$$\langle u, v \rangle = x_1 x_2 + 2x_1 y_2 + 2x_2 y_1 + 5y_1 y_2$$

definido para $u=(x_1,y_1)$ e $v=(x_2,y_2)$. Recorde que, analogamente ao caso com produto escalar, define-se um vetor unitário como um vetor u tal que ||u||=1, onde $||u||=\sqrt{\langle u,u\rangle}$. Além disso, dois vetores u e v são ditos ortogonais quando $\langle u,v\rangle=0$. Uma base diz-se uma base ortonormal quando seus elementos são mutuamente (dois-a-dois) ortogonais e unitários (segundo as definições acima).

Mostre que relativamente ao produto interno acima, o conjunto $\alpha = \{(1,0),(2,-1)\}$ é base ortonormal de \mathbb{R}^2 . O conjunto α é uma base ortonormal em relação ao produto escalar $u \cdot v$?

19. Determine o valor de k para que o conjunto $\beta = \{(2, -1), (k, 1)\}$ seja uma base ortogonal de \mathbb{R}^2 em relação ao produto interno

$$\langle u, v \rangle = 2x_1x_2 + x_1y_2 + x_2y_1 + y_1y_2,$$

onde $u = (x_1, y_1)$ e $v = (x_2, y_2)$. Determine também uma base ortonormal a partir da base β .

20. Considere o produto interno

$$\langle p, q \rangle = a_2 b_2 + a_1 b_1 + a_0 b_0$$

para polinômios $p = a_2x^2 + a_1x + a_0$ e $q = b_2x^2 + b_1x + b_0$ de grau menor ou igual a dois e a norma $||p|| = \sqrt{\langle p, p \rangle}$ (definida para qualquer polinômio p de grau menor ou igual a 2). Para $p_1 = x^2 - 2x + 3$, $p_2 = 3x - 4$ e $p_3 = 1 - x^2$, calcule:

- (a) $\langle p_1, p_2 \rangle$
- (b) $||p_1||$ e $||p_3||$
- (c) $||p_1+p_2||$
- (d) $\frac{p_2}{\|p_2\|}$
- (e) O ângulo θ entre p_1 e p_3 . Recorde que, analogamente ao caso do produto escalar, nesse caso $\theta = \arccos \frac{\langle p_1, p_3 \rangle}{\|p_1\| \|p_3\|}$.
- 21. Considere o produto interno

$$\langle p, q \rangle = 2ac + ad + bc + 2bd$$

definido para polinômios p = ax + b e q = cx + d de grau menor ou igual a um. Defina também a norma $||p|| = \sqrt{\langle p, p \rangle}$ (para qualquer polinômio p de grau menour ou igual a um).

- (a) Calcule o ângulo θ entre os polinômios p = x 1 e q = 3x. Recorde que, analogamente ao caso do produto escalar, nesse caso $\theta = \arccos \frac{\langle p, q \rangle}{\|p\| \|q\|}$.
- (b) Encontre um polinômio r que seja ortogonal ao polinômio p=x-1, isto é, tal que $\langle p,r\rangle=0$.

3

22. Considere o produto interno

$$\langle A, B \rangle = a_1 a_2 + b_1 b_2 + c_1 c_2 + d_1 d_2,$$

para matrizes 2×2

$$A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} \quad e \quad B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$$

e a norma $||A|| = \sqrt{\langle A, A \rangle}$ (definida para qualquer matriz A de ordem 2×2). Dadas as matrizes

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \quad \mathbf{e} \quad B = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix},$$

determine:

- (a) ||A||
- (b) ||B||
- (c) ||A + B||
- (d) O ângulo θ entre A e B. Recorde que, analogamente ao caso do produto escalar, nesse caso $\theta = \arccos \frac{\langle A, B \rangle}{\|A\| \|B\|}$.
- 23. Considerando o produto interno definido no Exercício 22, determine um valor de x de modo que $\langle A, B \rangle = 0$, onde

$$A = \begin{bmatrix} 1 & -2 \\ 5 & x \end{bmatrix} \quad \mathbf{e} \quad B = \begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix}.$$

24. Considere o seguinte produto interno

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt,$$

definido para funções contínuas f e g no intervalo [0,1], e defina $\|f\|=\sqrt{\langle f,f\rangle},\,\|g\|=\sqrt{\langle g,g\rangle}$ Calcule $\langle f, g \rangle$, $||f|| \in ||g||$ para $f(x) = x^2 - 2x \in g(x) = x + 3$.

25. Em cada item, mostre que $\langle \cdot, \cdot \rangle$ é produto interno em \mathbb{R}^2 , onde $x=(x_1,x_2)$ e $y=(y_1,y_2)$.

(a)
$$\langle x, y \rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$$
 (b) $\langle x, y \rangle = 2x_1y_1 - x_1y_2 - x_2y_1 + x_2y_2$

(b)
$$\langle x, y \rangle = 2x_1y_1 - x_1y_2 - x_2y_1 + x_2y_2$$

26. Mostre que

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt$$

define um produto interno no espaço de funções contínuas C[0,1].

27. Mostre que

$$\left\langle \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} e & f \\ g & h \end{bmatrix} \right\rangle = ae + 2bf + 3cg + dh$$

define produto interno no espaço $\mathbb{R}^{2\times 2}$ das matrizes reais 2×2 .

- 28. Seja $Q \in \mathbb{R}^{n \times n}$ uma matriz real simétrica e positiva definida, isto é, $Q^{\top} = Q$ e $Qx \cdot x > 0$ para todo $x \in \mathbb{R}^n$, $x \neq 0$. Mostre que $\langle x, y \rangle = Qx \cdot y$ define um produto interno em \mathbb{R}^n .
- 29. Seja X um espaço com produto interno. Mostre que
 - (a) $||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2),$
 - (b) $||u|| ||v||| \le ||u v||,$

para todo $u, v \in X$.

30. Seja X um espaço com produto interno. Para quaisquer $u,v\in X$, mostre que os vetores $\|u\|v+\|v\|u$ e $\|u\|v-\|v\|u$ são ortogonais.

Gabarito Parcial

- 1 (a) -23
 - (b) 7
 - (c) 0
 - (d) -2
 - (e) -3
 - (f) 4
- $2 \ u = (3, 2, 1)$
- 3 (a) Sim
 - (b) Sim
 - (c) Não
 - (d) Sim
 - (e) Sim
 - (f) Não
 - (g) Sim
 - (h) Sim
- 4 Qualquer múltiplo de (1,7,-4)
- 5 (a) $\frac{2}{17}$
 - (b) 3 ou -1
- 7 c=2 ou c=-2
- 12 (a) Nenhum dos dois
 - (b) Ortogonal
 - (c) Ortonormal
- 13 (a,b,c) = t(-5,1,4) para $t \neq 0$.
- 14 As coordenadas são $\frac{100+\pi}{\sqrt{2}}, \frac{2\sqrt{2}+\pi-100}{\sqrt{6}}, \frac{\sqrt{2}+100-\pi}{\sqrt{3}}, -1, 0.$
- 16 (a) $\theta = 0$
 - (b) $\theta = \frac{\pi}{2}$
 - (c) $\theta = \arccos \frac{14}{\sqrt{221}}$
 - (d) $\theta = \arccos \frac{4\sqrt{6}}{21}$
 - (e) $\theta = \frac{\pi}{4}$
- 19 $k = -\frac{1}{3}$
- 20 (a) -18

- (b) $\sqrt{14} \, \mathrm{e} \, \sqrt{2}$
- (c) $\sqrt{3}$
- (d) $\frac{3}{5}x \frac{4}{5}$
- (e) $\theta = \arccos \frac{\sqrt{7}}{7}$
- 21 (a) $\theta = \frac{\pi}{3}$ rad.
 - (b) r = x + 1
- 22 (c) $\sqrt{21}$
 - (d) $\theta = \arccos \frac{4}{\sqrt{42}}$
- $23 \ x = 4$
- 24 $\langle f,g \rangle = -\frac{29}{12}$ e $||f|| = \sqrt{\frac{8}{15}}$