MTM3112 - Álgebra Linear Quarta Lista

- 1. Sejam $\beta = \{(1,0),(0,1)\}, \ \beta_1 = \{(-1,1),(1,1)\}, \ \beta_2 = \{(\sqrt{3},1),(\sqrt{3},-1)\} \ e \ \beta_3 = \{(2,0),(0,2)\}$ bases ordenadas de \mathbb{R}^2 .
 - (a) Ache as matrizes mudança de base:
 - (i) $[I]^{\beta_1}_{\beta}$
 - (ii) $[I]_{\beta_1}^{\beta}$
 - (iii) $[I]_{\beta_2}^{\beta}$
 - (iv) $[I]_{\beta_3}^{\beta}$
 - (b) Ache as coordenadas do vetor v=(3,-2) em relação às bases:
 - (i) β
 - (ii) β_1
 - (iii) β_2
 - (iv) β_3
 - (c) Suponha que as coordenadas de um vetor v em relação à base β_1 são dadas por

$$[v]_{\beta_1} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

Encontre as coordenadas do vetor v em relação às bases:

- (i) β
- (ii) β_2
- (iii) β_3
- 2. Suponha que α e α' são bases ordenadas de \mathbb{R}^3 e que

$$[I]_{\alpha}^{\alpha'} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

Ache

- (a) $[v]_{\alpha}$ onde $[v]_{\alpha'} = \begin{bmatrix} -1\\2\\3 \end{bmatrix}$
- (b) $[v]_{\alpha'}$ onde $[v]_{\alpha} = \begin{bmatrix} -1\\2\\3 \end{bmatrix}$

3. No espaço das matrizes triangulares superiores, considere as bases β e β' dadas por

$$\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
$$\beta' = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\}$$

Ache a matrix mudança de base $[I]^{\beta'}_{\beta}$.

- 4. Se α é base de um espaço vetorial, qual é a matriz de mudança de base $[I]_{\alpha}^{\alpha}$?
- 5. Seja $T:V\to W$ uma função. Mostre que
 - (a) Se T é uma transformação linear, então T(0) = 0.
 - (b) Se $T(0) \neq 0$, então T não é uma transformação linear.
- 6. Determine quais das aplicações abaixo são transformações lineares. Justifique a sua resposta.
 - (a) $T_1: \mathbb{R}^2 \to \mathbb{R}^2$, $T_1(x, y) = (x + y, x y)$.
 - (b) $T_2: \mathbb{R}^2 \to \mathbb{R}$, $T_2(x,y) = xy$.
 - (c) $T_3: M(2,2) \to \mathbb{R}$, $T_3 \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - (d) $T_4: \mathbb{R} \to \mathbb{R}$, $T_4(x) = |x|$.
- 7. (a) Ache uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,0,0) = (2,0), T(0,1,0) = (1,1) e T(0,0,1) = (0,-1).
 - (b) Encontre $v \in \mathbb{R}^3$ tal que T(v) = (3, 2).
- 8. Qual é a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1,1)=(3,2,1) e T(0,-2)=(0,1,0)? Ache T(1,0) e T(0,1).
- 9. Qual é a transformação linear $S: \mathbb{R}^3 \to \mathbb{R}^2$ tal que S(3,2,1)=(1,1) e S(0,1,0)=(0,-2) e S(0,0,1)=(0,0)?
- 10. Determine a transformação linear $T: \mathcal{P}_2 \to \mathcal{P}_2$ tal que T(1) = x, $T(x) = 1 x^2$ e $T(x^2) = x + 2x^2$.

Gabarito Parcial

- $1 \quad (a) \quad (i) \quad \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$

 - (ii) $\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ (iii) $\begin{bmatrix} \frac{1}{6} & \frac{1}{2} \\ \frac{1}{6} & -\frac{1}{2} \end{bmatrix}$ (iv) $\begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$
- $3 \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
- 6 (a) Sim
 - (b) Não
 - (c) Não
 - (d) Não
- 7 (a) T(x, y, z) = (2x + y, y z)
- 10 $T(a_0 + a_1x + a_2x^2) = a_1 + (a_0 + a_2)x + (2a_2 a_1)x^2$