Análise Funcional Aplicada

Prof. Maicon Marques Alves

Terceira Lista

- 1. Seja X um espaço vetorial normado, (x_n) uma sequência em X e $x \in X$. Sabemos que $x_n \rightharpoonup x$ se e somente se $f(x_n) \to f(x)$ para todo $f \in X^*$. Mostre diretamente (sem usar o sistema de vizinhanças da topologia $\sigma(X, X^*)$) que se $x_n \to x$ então $x_n \rightharpoonup x$. Mostre que se X tem dimensão finita, então vale a recíproca. (dica: use o conceito de base dual.)
- 2. Seja X um espaço vetorial normado de dimensão infinita. Mostre que qualquer aberto não-vazio da topologia $\sigma(X, X^*)$ tem elementos de norma arbitrariamente grande. Conclua que nenhuma norma de X pode ser contínua na topologia $\sigma(X, X^*)$ e, como consequência, que não existe norma em X que gera $\sigma(X, X^*)$.
- 3. Seja X um espaço vetorial normado de dimensão infinita, $B_X = \{x \in X \mid ||x|| \le 1\}$ e $S_X = \{x \in X \mid ||x|| = 1\}$. Prove que o fecho de S_X na topologia $\sigma(X, X^*)$ é igual a S_X . Conclua que S_X não é fechado fraco de S_X . Prove ainda que $S_X = \{x \in X \mid ||x|| < 1\}$ não pertence a $\sigma(X, X^*)$ e não contém pontos interiores nessa topologia.
- 4. Seja X um espaço vetorial normado e X^* o seu dual. Considere X e X^* como espaços localmente convexos munidos com as topologias $\sigma(X,X^*)$ e $\sigma(X^*,X)$, respectivamente. Sejam f e g funcionais lineares tomando valores em X e X^* , respectivamente. Mostre que
 - (a) f é contínuo na topologia $\sigma(X, X^*)$ se e somente se $f \in X^*$.
 - (b) g é contínuo na topologia $\sigma(X^*, X)$ se e somente se existe $x \in X$ tal que g = J(x), onde J denota a aplicação canônica. Dica: use o Exercício 9 da Lista 1.
- 5. Seja X um espaço de Banach. Denote por $\tau_{\|\cdot\|}$ e $\tau_{\|\cdot\|_*}$ a topologia forte (gerada pela norma) em X e X^* , respectivamente. Mostre que
 - (a) $\sigma(X, X^*) \subset \tau_{\parallel \cdot \parallel}$.
 - (b) $\sigma(X, X^*) = \tau_{\|\cdot\|}$ se e somente se dim $X < \infty$.
 - (c) Se $x_n \rightharpoonup x$, então (x_n) é limitada e $||x|| \le \liminf ||x_n||$.
 - (d) Se $x_n \rightharpoonup x$ e $f_n \to f$, então $f_n(x_n) \to f(x)$.
 - (e) $\sigma(X^*, X) \subset \sigma(X^*, X^{**}) \subset \tau_{\|\cdot\|_*}$.

- (f) Se $f_n \stackrel{*}{\rightharpoonup} f$, então (f_n) é limitada e $||f||_* \le \liminf ||f_n||_*$.
- (g) Se $f_n \stackrel{*}{\rightharpoonup} f$ e $x_n \to x$, então $f_n(x_n) \to f(x)$.
- 6. Sejam X, Y espaços vetoriais normados. Mostre que
 - (a) Se $T \in B(X,Y)$, então $T: (X,\sigma(X,X^*)) \to (Y,\sigma(Y,Y^*))$ é continua.
 - (b) Se X é reflexivo e $T \in B(X^*, Y)$, então $T: (X^*, \sigma(X^*, X)) \to (Y, \sigma(Y, Y^*))$ é continua.
 - (c) Se $T \in B(X,Y^*)$, então $T:(X,\sigma(X,X^*)) \to (Y^*,\sigma(Y^*,Y))$ é continua.