Análise Funcional Aplicada

Prof. Maicon Marques Alves

Sétima Lista

- 1. Mostre que todo espaço de Hilbert é reflexivo.
- 2. Mostre que todo espaço com produto interno é uniformemente convexo.
- 3. Seja $\{x_n\}_{n=1}^N$ um conjunto ortonormal no espaço de Hilbert real \mathcal{H} . Mostre que a função

$$\mathcal{H} \ni x \mapsto \left\| x - \sum_{n=1}^{N} c_n x_n \right\| \in \mathbb{R}$$

atinge seu valor mínimo quando $c_n = \langle x, x_n \rangle$, para todo $1 \le n \le N$.

- 4. Seja \mathcal{H} espaço de Hilbert, $\langle \cdot, \cdot \rangle$ e (\cdot, \cdot) protudos internos em \mathcal{H} e $\| \cdot \|$ norma em \mathcal{H} tais que $\|x\| = \sqrt{\langle x, x \rangle} = \sqrt{\langle x, x \rangle}$ para todo $x \in \mathcal{H}$. Mostre que $\langle \cdot, \cdot \rangle = (\cdot, \cdot)$.
- 5. Seja \mathcal{H} um espaço de Hilbert e \mathcal{H}^* o seu dual, munido com a norma dual $\|\cdot\|_*$. Exiba um produto interno $\langle\cdot,\cdot\rangle_*$ em \mathcal{H}^* tal que $\|\cdot\|_* = \sqrt{\langle\cdot,\cdot\rangle_*}$. Conclua que \mathcal{H}^* é um espaço de Hilbert.
- 6. Seja X um espaço com produto interno, (x_n) uma sequência em X e $x \in X$. Mostre que $x_n \to x$ se e somente se $x_n \rightharpoonup x$ e $||x_n|| \to ||x||$.
- 7. Seja \mathcal{H} um espaço de Hilbert de dimensão infinita e $\{x_n\}_{n\geq 1}$ um subconjunto ortonormal de \mathcal{H} . Mostre que (x_n) define uma sequência em \mathcal{H} que converge fracamente para zero e que não tem subsequências fortemente convergentes.
- 8. Mostre que ℓ_p é Hilbert se e somente se p=2.
- 9. Seja $E := \{(x_n) \in \ell_2 \mid x_{2k} = 0 \quad \forall k \geq 0\}$. Mostre que E é fechado e encontre E^{\perp} .

- 10. Seja $\mathcal H$ um espaço de Hilbert e $M\subset\mathcal H$ um subespaço vetorial. Mostre que $(M^\perp)^\perp=\overline M$.
- 11. Em um espaço com produto interno, mostre que se $x_n \rightharpoonup x$ e $v_n \rightarrow v$, então $\langle x_n, v_n \rangle \rightarrow \langle x, v \rangle$.