Análise Funcional Aplicada

Prof. Maicon Marques Alves

Nona Lista

- 1. Seja M um espaço métrico e $X \subset M$. Mostre que
 - (a) Se X é totalmente limitado e $Y \subset X$, então Y é totalmente limitado.
 - (b) X é totalmente limitado se e somente se \overline{X} é totalmente limitado.
- 2. Mostre que a imagem de um operador compacto é separável.
- 3. Seja \mathcal{H} um espaço de Hilbert e $T \in B(\mathcal{H})$. Mostre que T é compacto se e somente se T^* é compacto.
- 4. Sejam \mathcal{H} e \mathcal{G} espaços de Hilbert e $T \in \mathcal{B}(\mathcal{H}, \mathcal{G})$ um operador compacto. Mostre que se T é sobrejetivo, então dim $\mathcal{G} < \infty$.
- 5. Seja $M:C[0,1]\to C[0,1]$ o operador de multiplicação definido por

$$(Mf)(x) = xf(x) \quad \forall x \in [0, 1].$$

Mostre que M não é compacto. Dica: considere o subespaço $S:=\{f\in C[0,1]\mid f(x)=0\text{ se }x\in[0,1/2]\}$ e mostre que M é inversível com inversa contínua em S.

6. Seja $K: L^2[a,b] \to L^2[a,b]$ definido por

$$(Kf)(x) = \int_{a}^{b} k(x,y)f(y)dy,$$

onde $k(\cdot,\cdot) \in L^2([a,b] \times [a,b])$. Mostre que K é linear, limitado e compacto.