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Abstract This paper studies the iteration-complexity of a new primal-dual
algorithm based on Rockafellar’s proximal method of multipliers (PMM) for
solving smooth convex programming problems with inequality constraints. In
each step, either a step of Rockafellar’s PMM for a second-order model of the
problem is computed or a relaxed extragradient step is performed. The result-
ing algorithm is a (large-step) relaxed hybrid proximal extragradient (r-HPE)
method of multipliers, which combines Rockafellar’s PMM with the r-HPE
method.
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1 Introduction

The smooth convex programming problem with (for the sake of simplicity)
only inequality constraints is

min f(x) s.t. g(x) ≤ 0 (1)

where f : Rn → R and the components of g = (g1, . . . , gm) : Rn → Rm are
smooth convex functions. Dual methods for this problem solve the associated
dual problem

max

(
inf

x∈Rn
f(x) + ⟨y, g(x)⟩

)
s.t. y ≥ 0

and, en passant, find a solution of the original (primal) problem. Notice that a
pair (x, y) satisfies the Karush-Kuhn-Tucker conditions for problem (1) if and
only if x is a solution of this problem, y is a solution of the associated dual
problem, and there is no duality gap.

The method of multipliers, which was proposed by Hestenes [3,4] and
Powel [10] for equality constrained optimization problems and extended by
Rockafellar [11] (see also [12]) to inequality constrained convex programming
problems, is a typical example of a dual method. It generates iteractively se-
quences (xk) and (yk) as follows:

xk ≈ arg min
x∈Rn

L (x, yk−1, λk), yk = yk−1 + λk∇yL (xk, yk−1, λk)

where ≈ stands for approximate solution, λk > 0, and L (x, y, λ) is the aug-
mented Lagrangian

L (x, y, λ) = f(x) +
1

2λ
[∥(y + λg(x))+∥2 − ∥y∥2]

= max
y′≥0

f(x) + ⟨y′, g(x)⟩ − 1

2λ
∥y′ − y∥2.

The method of multipliers is also called the augmented Lagrangian method. In
the seminal article [12], Rockafellar proved that the method of multipliers is
an instance of his proximal point method (hereafter PPM) [13] applied to the
dual objective function. Still in [12], Rockafellar proposed a new primal-dual
method for (1), which we discuss next and that we will use in this paper to
design a new primal-dual method for this problem.

Rockafellar’s proximal method of multipliers (hereafter PMM) [12] gener-
ates, for any starting point (x0, y0), a sequence

(
(xk, yk)

)
k∈N as the approxi-

mate solution of a regularized saddle-point problem

(xk, yk) ≈ arg min
x∈Rn

max
y∈Rm

+

f(x) + ⟨y, g(x)⟩+ 1

2λ

[
∥x− x̊∥2 − ∥y − ẙ∥2

]
(2)
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where (̊x, ẙ) = (xk−1, yk−1) is the current iterate and λ = λk > 0 is a stepsize
parameter. Notice that the objective function of the above saddle-point prob-
lem is obtained by adding to the augmented Lagrangian a proximal term for
the primal variable x. If inf λk > 0 and

∞∑
k=1

∥(xk, yk)− (x∗k, y
∗
k)∥ <∞ (3)

where (x∗k, y
∗
k) is the (exact) solution of (2), then ((xk, yk))k∈N converges to

a solution of the Karush-Kuhn-Tucker conditions for (1) provided that there
exist a pair satisfying these conditions. This result follows from the facts that
the satisfaction of KKT conditions for (1) can be formulated as a monotone
inclusion problem and (2) is the Rockafellar’s PPM iteration for this inclu-
sion problem (see comments after Proposition 3). Although (2) is a (strongly)
convex-concave problem – and hence has a unique solution – the computation
of its exact or an approximate solution can be very hard.

We assume in this paper that f and gi (i = 1, . . . ,m) are C 2 convex func-
tions with Lipschitz continuous Hessians. The method proposed in this paper
either solves a second-order model of (2) in which second-order approxima-
tions of f and gi (i = 1, . . . ,m) replace these functions in (2) or performs a
(relaxed) extragradient step. In its general form, PMM is an inexact PPM in
that each iteration approximately solves (2) according to the summable error
criterion (3). The method proposed in this paper can also be viewed as an
inexact PPM but one based on a relative error criterion instead of the one
in (3). More specifically, it can be viewed as an instance of the (large-step)
relaxed hybrid proximal extragradient (r-HPE) method [8,16,22] which we
briefly discuss next.

Given a point-to-set maximal monotone operator T : Rp ⇒ Rp, the large-
step r-HPE method computes approximate solutions for the monotone inclu-
sion problem 0 ∈ T (z) as extragradient steps

zk = zk−1 − τλkvk, (4)

where zk−1 is the current iterate, τ ∈ (0, 1] is a relaxation parameter, λk > 0
is the stepsize and vk together with the pair (z̃k, εk) satisfy the following
conditions

vk ∈ T [εk](z̃k), ∥λkvk + z̃k − zk−1∥2 + 2λkεk ≤ σ2∥z̃k − zk−1∥2,
λk∥z̃k − zk−1∥ ≥ η

(5)

where σ ∈ [0, 1) and η > 0 are given constants and T ε denotes the ε-
enlargement of T . (It has the property that T ε(z) ⊃ T (z) for every z.) The
method proposed in this paper for solving the minimization problem (1) can
be viewed as a realization of the above framework where the operator T is the
standard saddle-point operator defined as T (z) := (∇f(x) +∇g(x)y,−g(x) +
NRm

+
(y)) for every z = (x, y). More specifically, the method consists of two

type of iterations. The ones which perform extragradient steps can be viewed
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as a realization of (5). On the other hand, each one of the other iterations
updates the stepsize by increasing it by a multiplicative factor larger than
one and then solves a suitable second-order model of (2). After a few of these
iterations, an approximate solution satisfying (5) is then obtained. Hence, in
contrast to the PMM which does not specify how to obtain an approximate
solution (xk, yk) of (2), or equivalently the prox inclusion 0 ∈ λkT (z)+z−zk−1

with T as above, these iterations provide a concrete scheme for computing an
approximate solution of this prox inclusion according to the relative criterion
in (5). Pointwise and ergodic iteration-complexity bounds are then derived for
our method using the fact that the large-step r-HPE method has pointwise
and ergodic global convergence rates of O(1/k) and O(1/k3/2), respectively.

The paper is organized as follows. Section 2 reviews some basic properties
of ε-enlargements of maximal monotone operators and briefly reviews the ba-
sic properties of PPM and the large-step r-HPE method. Section 3 presents
the basic properties of the minimization problem of interest and some equiva-
lences between certain saddle-point, complementarity and monotone inclusion
problems, as well as of its regularized versions. Section 4 introduces an error
measure, shows some of its properties and how it is related to the relative error
criterion for the large-step r-HPE method. Section 5 studies the smooth convex
programming problem (1) and its second-order approximations. The proposed
method (Algorithm 1) is presented in Section 6 and its iteration-complexities
(pointwise and ergodic) are studied in Section 7.

2 Rockafellar’s proximal point method and the hybrid proximal
extragradient method

This work is based on Rockafellar’s proximal point method (PPM). The new
method presented in this paper is a particular instance of the (large-step)
relaxed hybrid proximal extragradient (r-HPE) method [14]. For these reasons,
in this section we review Rockafellar’s PPM, the large-step r-HPE method, and
review some convergence properties of these methods.

Maximal monotone operators, the monotone inclusion problem, and Rockafel-
lar’s proximal point method

A point-to-set operator in Rp, T : Rp ⇒ Rp, is a relation T ⊂ Rp × Rp and

T (z) := {v | (z, v) ∈ T}, z ∈ Rp.

The inverse of T is T−1 : Rp ⇒ Rp, T−1 := {(v, z) | (z, v) ∈ T}. The domain
and the range of T are, respectively,

D(T ) := {z | T (z) ̸= ∅}, R(T ) := {v | ∃z ∈ Rp, v ∈ T (z)}.
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When T (z) is a singleton for all z ∈ D(T ), it is usual to identify T with the
map D(T ) ∋ z 7→ v ∈ Rp where T (z) = {v}. If T1, T2 : Rp ⇒ Rp and λ ∈ R,
then T1 + T2 : Rp ⇒ Rp and λT1 : Rp ⇒ Rp are defined as

(T1+T2)(z) := {v1+v2 | v1 ∈ T1(z), v2 ∈ T2(z)}, (λT1)(z) := {λv | v ∈ T1(z)}.

A point-to-set operator T : Rp ⇒ Rp is monotone if

⟨z − z′, v − v′⟩ ≥ 0, ∀(z, v), (z′, v′) ∈ T

and it is maximal monotone if it is a maximal element in the family of mono-
tone point-to-set operators in Rp with respect to the partial order of set in-
clusion. The subdifferential of a proper closed convex function is a classical
example of a maximal monotone operator. Minty’s theorem [5] states that if
T is maximal monotone and λ > 0, then the proximal map (λT + I)−1 is a
point-to-point nonexpansive operator with domain Rp.

Themonotone inclusion problem is: given T : Rp ⇒ Rp maximal monotone,
find z such that

0 ∈ T (z). (6)

Rockafellar’s PPM [13] generates, for any starting z0 ∈ Rp, a sequence (zk) by
the approximate rule

zk ≈ (λkT + I)−1zk−1,

where (λk) is a sequence of strictly positive stepsizes. Rockafellar proved [13]
that if (6) has a solution and

∥∥zk − (λkT + I)−1zk−1

∥∥ ≤ ek, ∞∑
k=1

ek <∞, inf λk > 0, (7)

then (zk) converges to a solution of (6).
In each step of the PPM, computation of the proximal map (λT + I)−1z

amounts to solving the proximal (sub) problem

0 ∈ λT (z+) + z+ − z,

a regularized inclusion problem which, although well-posed, is almost as hard
as (6). From this fact stems the necessity of using approximations of the prox-
imal map, for example, as prescribed in (7). Moreover, since each new iterate
is, hopefully, just a better approximation to the solution than the old one,
if it was computed with high accuracy, then the computational cost of each
iteration would be too high (or even prohibitive) and this would impair the
overall performance of the method (or even make it infeasible).

So, it seems natural to try to improve Rockafellar’s PPM by devising a
variant of this method that would accept a relative error tolerance and wherein
the progress of the iterates towards the solution set could be estimated. In the
next subsection we discuss the hybrid proximal extragradient (HPE) method,
a variant of the PPM which aims to satisfy these goals.
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Enlargements of maximal monotone operators and the hybrid proximal extra-
gradient method

The HPE method [16,17] is a modification of Rockafellar’s PPM wherein: (a)
the proximal subproblem, in each iteration, is to be solved within a relative
error tolerance and (b) the update rule is modified so as to guarantee that the
next iterate is closer to the solution set by a quantifiable amount.

An additional feature of (a) is that, in some sense, errors in the inclusion
on the proximal subproblems are allowed. Recall that the ε-enlargement [2] of
a maximal monotone operator T : Rp ⇒ Rp is

T [ε](z) := {v | ⟨z − z′, v − v′⟩ ≥ −ε ∀(z′, v′) ∈ T}, z ∈ Rp, ε ≥ 0. (8)

From now on in this section T : Rp ⇒ Rp is a maximal monotone operator.
The r-HPE method [20] for the monotone inclusion problem (6) proceed as
follows: choose z0 ∈ Rp and σ ∈ [0, 1); for i = 1, 2, . . . compute λi > 0 and
(z̃i, vi, εi) ∈ Rp × Rp × R+ such that

vi ∈ T [εi](z̃i), ∥λivi + z̃i − zi−1∥2 + 2λiεi ≤ σ2∥z̃i − zi−1∥2,
choose τi ∈ (0, 1] and set

zi = zi−1 − τiλivi.
(9)

In practical applications, each problem has a particular structure which may
render feasible the computation of λi, z̃i, vi, and εi as prescribed above. For
example, T may be Lipschitz continuous, it may be differentiable, or it may
be a sum of an operator which has a proximal map easily computable with
others with some of these properties. Prescriptions for computing λi, z̃i, vi,
and εi under each one of these assumptions were presented in [6–9,15,16,19,
21].

Computation of (λT +I)−1z is equivalent to the resolution of an inclusion-
equation system:

z+ = (λT + I)−1z ⇐⇒ ∃v ∈ T (z+), λv + z+ − z = 0.

Whence, the error criterion in the first line of (9) relaxes both the inclusion
and the equality at the right-hand side of the above equivalence. Altogether,
each r-HPE iteration consists in: (1) solving (with a relative error tolerance)
a “proximal” inclusion-equation system; (2) updating zi−1 to zi by means of
an extragradient step, that is, using vi ∈ T [εi](z̃i).

In the remainder part of this section we present some convergence prop-
erties of the r-HPE method which were essentially proved in [14] and revised
in [22]. The next proposition shows that zi is closer than zi−1 to the solution
set with respect to the square of the norm, by a quantifiable amount, and
present some useful estimations.

Proposition 1 ([22, Proposition 2.2]) For any i ≥ 1 and z∗ ∈ T−1(0),

(a) (1−σ)∥z̃i − zi−1∥ ≤ ∥λivi∥ ≤ (1+σ)∥z̃i − zi−1∥ and 2λiεi ≤ σ2∥z̃i − zi−1∥2;
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(b) ∥z∗ − zi−1∥2 ≥ ∥z∗ − zi∥2 + τi(1− σ2)∥z̃i − zi−1∥2 ≥ ∥z∗ − zi∥2;
(c) ∥z∗ − z0∥2 ≥ ∥z∗ − zi∥2 + (1− σ2)

∑i
j=1 τj∥z̃j − zj−1∥2;

(d) ∥z∗ − z̃i∥ ≤ ∥z∗ − zi−1∥/
√
1− σ2 and ∥z̃i − zi−1∥ ≤ ∥z∗ − zi−1∥/

√
1− σ2.

The aggregate stepsize Λi and the ergodic sequences (z̃ai ), (ṽ
a
i ), (ε

a
i ) asso-

ciated with the sequences (λi), (z̃i), (vi), and (εi) are, respectively,

Λi :=

i∑
j=1

τjλj ,

z̃ a
i :=

1

Λi

i∑
j=1

τjλj z̃j , v a
i :=

1

Λi

i∑
j=1

τjλjvj ,

ε a
i :=

1

Λi

i∑
j=1

τjλj(εj + ⟨z̃j − z̃ a
i , vj − v a

i ⟩).

(10)

Next we present the pointwise and ergodic iteration-complexities of the
large-step r-HPE method, i.e., the r-HPE method with a large-step condi-
tion [7,8]. We also assume that the sequence of relaxation parameters (τi) is
bounded away from zero.

Theorem 1 ([22, Theorem 2.4]) If d0 is the distance from z0 to T−1(0) ̸= ∅
and

λi∥z̃i − zi−1∥ ≥ η > 0, τi ≥ τ > 0 i = 1, 2, . . .

then, for any i ≥ 1,

(a) there exists j ∈ {1, . . . , i} such that vj ∈ T [εj ](z̃j) and

∥vj∥ ≤
d20

iτ(1− σ)η
, εj ≤

σ2d30
(iτ)3/2(1− σ2)3/22η

;

(b) vai ∈ T [εai ](z̃ai ), ∥vai ∥ ≤
2d20

(iτ)3/2(
√
1− σ2)η

, and εai ≤
2d30

(iτ)3/2(1− σ2)η
.

Remark. We mention that the inclusion in Item (a) of Theorem 1 is in the
enlargement of T which appears in the inclusion in (9). To be more precise,
in some applications the operator T may have a special structure, like for
instance T = S + NX , where S is point-to-point and NX is the normal cone
operator of a closed convex set X , and the inclusion in (9), in this case, is

vi ∈
(
S +N

[εi]
X

)
(z̃i), which is stronger than vi ∈ T [εi](z̃i). In such a case, Item

(a) would guarantee that vj ∈
(
S +N

[εj ]
X

)
(z̃j). Unfortunately, the observation

is not true for the Item (b).
The next result was proved in [18, Corollary 1]

Lemma 1 If z̊ ∈ Rp, λ > 0, and v ∈ T [ε](z), then

∥λv + z − z̊∥2 + 2λε ≥
∥∥z − (λT + I)−1z̊

∥∥2 + ∥∥λv − (z̊ − (λT + I)−1z̊
)∥∥2 .
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3 The smooth convex programming problem

Consider the smooth convex optimization problem (1), i.e.,

(P ) minf(x) s.t. g(x) ≤ 0, (11)

where f : Rn → R and g = (g1, . . . , gm) : Rn → Rm. From now on we assume
that:

O.1) f, g1, . . . , gm are convex C 2 functions;
O.2) the Hessians of f and g1, . . . , gm are Lipschitz continuous with Lipschitz

constants L0 and L1, . . . , Lm, respectively, with Li ̸= 0 for some i ≥ 1;
O.3) there exists (x, y) ∈ Rn × Rm satisfying Karush-Kuhn-Tucker conditions

for (11),

∇f(x) +∇g(x)y = 0, g(x) ≤ 0, y ≥ 0, ⟨y, g(x)⟩ = 0. (12)

The canonical Lagrangian of problem (11) L : Rn × Rm → R and the
corresponding saddle-point operator S : Rn×Rm → Rn×Rm are, respectively,

L (x, y) := f(x) + ⟨y, g(x)⟩, S(x, y) :=

[
∇xL (x, y)
−∇yL (x, y)

]
=

[
∇f(x) +∇g(x)y

−g(x)

]
.

(13)

The normal cone operator of Rn×Rm
+ , NRn×Rm

+
: Rn×Rm ⇒ Rn×Rm, is the

subdifferential of the indicator function of this set δRn×Rm
+

: Rn × Rm → R,
that is,

δRn×Rm
+
(x, y) :=

{
0, if y ≥ 0;

∞ otherwise,
NRn×Rm

+
:= ∂δRn×Rm

+
. (14)

Next we review some reformulations of (12).

Proposition 2 The point-to-set operator S+NRn×Rm
+

is maximal monotone

and for any (x, y) ∈ Rn × Rm the following conditions are equivalent:

(a) ∇f(x) +∇g(x)y = 0, g(x) ≤ 0, y ≥ 0, and ⟨y, g(x)⟩ = 0;
(b) (x, y) is a solution of the saddle-point problem maxy∈Rm

+
minx∈Rn f(x) +

⟨y, g(x)⟩;
(c) (x, y) is a solution of the complementarity problem

(x, y) ∈ Rn × Rm; w ∈ Rm; S(x, y)− (0, w) = 0; y, w ≥ 0; ⟨y, w⟩ = 0;

(d) (x, y) is a solution of the monotone inclusion problem 0 ∈
(
S+NRn×Rm

+

)
(x, y).

Next we review some reformulations of the saddle-point problem in (2).

Proposition 3 Take (̊x, ẙ) ∈ Rn × Rm and λ > 0. The following conditions
are equivalent:
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(a) (x, y) is the solution of the regularized saddle-point problem

minx∈Rn maxy∈Rm
+
f(x) + ⟨y, g(x)⟩+ 1

2λ

(
∥x− x̊∥2 − ∥y − ẙ∥2

)
;

(b) (x, y) is the solution of the regularized complementarity problem

(x, y) ∈ Rn × Rm; λ

(
S(x, y)− (0, w)

)
+ (x, y)− (̊x, ẙ) = 0; y, w ≥ 0; ⟨y, w⟩ = 0;

(c) (x, y) =
(
λ(S+NRn×Rm

+
) + I

)−1

(̊x, ẙ).

It follows from Propositions 2 and 3 that (12) is equivalent to the monotone
inclusion problem

0 ∈ (S+NRn×Rm
+
)(x, y)

and that (2) is the PPM iteration for this inclusion problem. Therefore, the
convergence analysis of the Rockafellar’s PMM follows from Rockafellar’s con-
vergence analysis of the PPM.

4 An error measure for regularized saddle-point problems

We will present a modification of Rockafellar’s PMM which uses approximate
solutions of the regularized saddle-point problem (2) satisfying a relative er-
ror tolerance. To that effect, in this section we define a generic instance of
problem (2), define an error measure for approximate solutions of this generic
instance, and analyze some properties of the proposed error measure.

Consider, for λ > 0 and (̊x, ẙ) ∈ Rn × Rm, a generic instance of the reg-
ularized saddle-point problem to be solved in each iteration of Rockafellar’s
PMM,

min
x∈Rn

max
y∈Rm

+

f(x) + ⟨y, g(x)⟩+ 1

2λ
(∥x− x̊∥2 − ∥y − ẙ∥2). (15)

Define for λ ∈ R and (̊x, ẙ) ∈ Rn × Rm

ΨS,(x̊,̊y),λ : Rn × Rm
+ → R,

ΨS,(x̊,̊y),λ(x, y) := min
w∈Rm

+

∥∥∥∥λ(S(x, y)− (0, w)

)
+ (x, y)− (̊x, ẙ)

∥∥∥∥2 + 2λ⟨y, w⟩.

(16)

For λ > 0, this function is trivially an error measure for the complementar-
ity problem on Proposition 3 (b), a problem which is equivalent to (15), by
Proposition 3 (a); hence, ΨS,(̊x,̊y),λ(x, y) is an error measure for (15).

In the context of complementarity problems, the quantity ⟨y, w⟩ in (16) is
refered to as the complementarity gap. Next we show that the complementarity
gap is related to the ε-subdifferential of δRn×Rm

+
and to the ε-enlargement of
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the normal cone operator of Rn × Rm
+ . Direct use of (8) and of the definition

of the ε-subdifferential [1] yields

∀(x, y) ∈ Rn × Rm
+ , ε ≥ 0

∂εδRn×Rm
+
(x, y) = N

[ε]
Rn×Rm

+
(x, y) =

{
−(0, w) | w ∈ Rm

+ , ⟨y, w⟩ ≤ ε
}
.

(17)

Since

argmin
w∈Rm

+

∥λ
(
S(x, y)− (0, w)

)
+ (x, y)− (̊x, ẙ)∥2 + 2λ⟨y, w⟩ = (g(x) + λ−1ẙ)−,

(18)

it follows from definition (16) that

ΨS,(̊x,̊y),λ(x, y) = ∥λ(∇f(x) +∇g(x)y) + x− x̊∥2 + ∥y − (λg(x) + ẙ)+∥2

+ 2⟨y, (λg(x) + ẙ)−⟩

= ∥λS(x, y) + (x, y)− (̊x, ẙ)∥2 − ∥(λg(x) + ẙ)−∥2

(19)

for any (x, y) ∈ Rn × Rm
+ .

Lemma 2 If λ > 0, z̊ = (̊x, ẙ) ∈ Rn × Rm, z = (x, y) ∈ Rm × Rm
+ and w, v, ε

are defined as

w := (g(x) + λ−1ẙ)−, v := S(z)− (0, w), ε := ⟨y, w⟩,

then

(a) −(0, w) ∈ ∂εδRn×Rm
+
(z) = N

[ε]
Rn×Rm

+
(z);

(b) v ∈ (S + N
[ε]
Rn×Rm

+
)(z) ⊂ (S + NRn×Rm

+
)[ε](z), ∥λv + z − z̊∥2 + 2λε =

ΨS,̊z,λ(z);

(c)
∥∥∥z − (λ(S+NRn×Rm

+
) + I

)−1
(̊z)
∥∥∥ ≤√ΨS,̊z,λ(z).

Proof Item (a) follows trivially from the definitions of w and ε, and (17). The
first inclusion in item (b) follows from the definition of v and item (a); the
second inclusion follows from direct calculations and (8); the identity in item
(b) follows from the definitions of w and ε, (16) and (18). Finally, item (c)
follows from item (b) and Lemma 1.

Now we will show how to update λ so that ΨS,̊z,λ(x, y) does not increase
when z̊ is updated like zk−1 is updated to zk in (9).

Proposition 4 Suppose that λ > 0, z̊ = (̊x, ẙ) ∈ Rn × Rm, z = (x, y) ∈
Rn × Rm

+ and define

w := (g(x) + λ−1ẙ)−, v := S(z)− (0, w), z̊(τ) := z̊ − τλv =: (̊x(τ), ẙ(τ)).
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For any τ ∈ [0, 1],

x̊(τ) = x̊− τλ(∇f(x) +∇g(x)y), ẙ(τ) = ẙ + τλ(g(x) + (g(x) + λ−1ẙ)−) ,

ΨS,̊z(τ),(1−τ)λ(z) ≤ ΨS,̊z,λ(z).

If, additionally, ẙ ≥ 0 then, for any τ ∈ [0, 1], ẙ(τ) ≥ 0.

Proof Direct use of the definitions of w, v and z̊(τ) yields the expressions for
x̊(τ) and ẙ(τ) as well as the identity

(1− τ)λ (S(z)− (0, w)) + z − z̊(τ) = λ (S(z)− (0, w)) + z − z̊,

which, in turn, combined with (16) gives, for any τ ∈ [0, 1],

ΨS,̊z(τ),(1−τ)λ(z) ≤ ∥(1− τ)λ (S(z)− (0, w)) + z − z̊(τ)∥2 + 2(1− τ)λ⟨y, w⟩
= ∥λ (S(z)− (0, w)) + z − z̊∥2 + 2(1− τ)λ⟨y, w⟩
≤ ΨS,̊z,λ(z),

where the second inequality follows from (16), (18), the assumption τ ∈ [0, 1]
and the definition of w. To prove the second part of the proposition, observe
that, for any τ ∈ [0, 1], ẙ(τ) is a convex combination of ẙ and ẙ(1) = (λg(x)+
ẙ)+.

The next lemma and the next proposition provide quantitative and quali-
tative estimations of the dependence of ΨS,(̊x,̊y),λ(x, y) on λ.

Lemma 3 If ψ(λ) := ΨS,̊z,λ(z) for λ ∈ R, where z̊ = (̊x, ẙ) ∈ Rn × Rm, and
z = (x, y) ∈ Rn × Rm

+ , then

(a) ψ is convex, differentiable and piecewise quadratic;

(b)
d

dλ
ψ(λ) = 2 (⟨S(z), λ(S(z)− (0, w)) + z − z̊⟩) where w = (g(x) + λ−1ẙ)− ;

(c) ψ(λ) ≤ (∥λS(z)∥+ ∥z − z̊∥)2;
(d) limλ→∞ ψ(λ) <∞ if and only if (x, y) is a solution of (12).

Proof The proof follows trivially from (19).

Proposition 5 If z̊ = (̊x, ẙ) ∈ Rn×Rm, z = (x, y) ∈ Rn×Rm
+ and 0 < µ ≤ λ

then √
ΨS,̊z,λ(z) ≤

λ

µ

√
ΨS,̊z,µ(z) +

λ− µ
µ
∥z − z̊∥.

Proof Let w := (g(x) + µ−1ẙ)− and

rµ := µ

(
S(z)− (0, w)

)
+ z − z̊, rλ := λ

(
S(z)− (0, w)

)
+ z − z̊.
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It follows from the latter definitions, (16) and (18) that ΨS,̊z,µ(z) = ∥rµ∥2 +
2µ⟨y, w⟩ and

ΨS,̊z,λ(z) ≤ ∥rλ∥2 + 2λ⟨y, w⟩ =
∥∥∥∥λµrµ +

µ− λ
µ

(z − z̊)
∥∥∥∥2 + λ

µ
2µ⟨y, w⟩

≤
(
λ

µ

)2 (
∥rµ∥2 + 2µ⟨y, w⟩

)
+ 2

λ

µ

λ− µ
µ
∥rµ∥∥z − z̊∥

+

(
λ− µ
µ
∥z − z̊∥

)2

≤
(
λ

µ

)2

ΨS,̊z,µ(z) + 2
λ

µ

√
ΨS,̊z,µ(z)

λ− µ
µ
∥z − z̊∥

+

(
λ− µ
µ
∥z − z̊∥

)2

,

where the first inequality follows from the assumption 0 < µ ≤ λ. The conclu-
sion follows trivially from the latter inequality.

5 Quadratic approximations of the smooth convex programming
problem

In this section we use second-order approximations of f and g around a point
x̃ ∈ Rn to define a second-order approximation of problem (11) around such a
point. We also define a local model of (2), where second-order approximations
of f and g around x̃ substitute these functions, and give conditions on a point
(x̃, ỹ) under which a solution of the local model is a better approximation to
the solution of (2) than this point.

For x̃ ∈ Rn, let f[x̃] and g[x̃] = (g1,[x̃], . . . , gm,[x̃]) be the quadratic approxi-
mations of f and g = (g1, . . . , gm) around x̃, that is,

f[x̃](x) := f(x̃) +∇f(x̃)T (x− x̃) + 1

2
(x− x̃)T∇2f(x̃)(x− x̃)

gi,[x̃](x) := gi(x̃) +∇gi(x̃)T (x− x̃) +
1

2
(x− x̃)T∇2gi(x̃)(x− x̃), i = 1, . . . ,m.

(20)

We define

(P[ x̃ ]) minf[x̃](x) s.t. g[x̃](x) ≤ 0 (21)

as the quadratic approximation of problem (11) around x̃. The canonical La-
grangian of (21), L[x̃] : Rn × Rm → R, and the corresponding saddle-point
operator, S[x̃] : Rn × Rm → Rn × Rm, are, respectively,

L[x̃](x, y) := f[x̃](x) + ⟨y, g[x̃](x)⟩,

S[x̃](x, y) :=

[
∇xL[x̃](x, y)
−∇yL[x̃](x, y)

]
=

[
∇f[x̃](x) +∇g[x̃](x)y

−g[x̃](x)

]
.

(22)
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Since L[x̃](x, y) is a 3rd-degree polynomial in (x, y) and the components of
S[x̃](x, y) are 2nd-degree polynomials in (x, y), neither L[x̃] is a quadratic ap-
proximation of L nor S[x̃] is a linear approximation of S; nevertheless, this
3-rd degree functional and that componentwise quadratic operator are, respec-
tively, the canonical Lagrangian and the associated saddle-point operator of a
quadratic approximation of (P ) around x̃, namely, (P[x̃]). So, we may say that
L[x̃] and S[x̃] are approximations of L and S based on quadratic approxima-
tions of f and g.

Each iteration of Rockafellar’s PMM applied to problem (P[x̃]) requires the
solution of an instance of the generic regularized saddle-point problem

min
x∈Rn

max
y∈Rm

+

f[x̃](x) +
⟨
y, g[x̃](x)

⟩
+

1

2λ
(∥x− x̊∥2 − ∥y − ẙ∥2), (23)

where λ > 0 and (̊x, ẙ) ∈ Rn × Rm. It follows from Proposition 3 that this
problem is equivalent to the complementarity problem

(x, y) ∈ Rn × Rm
+ ; λS[x̃](x, y) + (x, y)− (̊x, ẙ) = (0, w); y, w ≥ 0; ⟨y, w⟩ = 0.

To analyze the error of substituting S by S[x̃] we introduce the notation:

Lg = (L1, . . . , Lm); |(y1, . . . , ym)| = (|y1|, . . . , |ym|), (y1, . . . , ym) ∈ Rm.
(24)

Lemma 4 For any (x, y) ∈ Rn × Rm and x̃ ∈ Rn

∥∥S(x, y)− S[x̃](x, y)
∥∥ ≤ L0 + ⟨Lg, |y|⟩

2
∥x− x̃∥2 + ∥Lg∥

6
∥x− x̃∥3.

Proof It follows from triangle inequality, (20) and assumption (O.2) that

∥∇xL[x̃](x, y)−∇xL (x, y)∥ ≤ ∥∇f[x̃](x)−∇f(x)∥+ ∥(∇g[x̃](x)−∇g(x))y∥

≤

(
L0

2
+

m∑
i=1

|yi|
Li

2

)
∥x− x̃∥2

and

∥g[x̃](x)− g(x)∥ =

√√√√ m∑
i=1

(
gi,[x̃](x)− gi(x)

)2 ≤
√√√√ m∑

i=1

(
Li

6
∥x− x̃∥3

)2

=
∥Lg∥
6
∥x− x̃∥3.

To end the proof, use the above inequalities, (13) and (22).

Define, for (̊x, ẙ) ∈ Rn × Rm and λ > 0,

Nθ((̊x, ẙ), λ) :=

(x, y) ∈ Rn × Rm
+

∣∣∣∣∣∣∣
λ

(
L0 + ⟨Lg, |y|⟩

2
+

2∥Lg∥
3

ρ

)
ρ ≤ θ,

where ρ =
√
ΨS,(̊x,̊y),λ(x, y)

 .

(25)
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The next proposition shows that, if (x̃, ỹ) ∈ Nθ((̊x, ẙ), λ) with θ ≤ 1/4, then
the solution of the regularized saddle-point problem (23) is a better approxi-
mation than (x̃, ỹ) to the solution of the regularized saddle-point problem (15),
with respect to the merit function ΨS,(x,y),λ.

Proposition 6 If λ > 0, (̊x, ẙ) ∈ Rn × Rm, (x̃, ỹ) ∈ Rn × Rm
+ and

(x, y) = arg min
x∈Rn

max
y∈Rm

+

f[x̃](x) +
⟨
y, g[x̃](x)

⟩
+

1

2λ

(
∥x− x̊∥2 − ∥y − ẙ∥2

)
,

then

∥(x̃, ỹ)− (x, y)∥ ≤
√
ΨS,(̊x,̊y),λ(x̃, ỹ).

If, additionally, (x̃, ỹ) ∈ Nθ((̊x, ẙ), λ) with 0 ≤ θ ≤ 1/4, then√
ΨS,(x̊,̊y),λ(x, y) ≤ θ

√
ΨS,(̊x,̊y)λ(x̃, ỹ)

and (x, y) ∈ Nθ2((̊x, ẙ), λ).

Proof Applying Lemma 2 to (23) and using (22) we conclude that

∥(x̃, ỹ)− (x, y)∥ ≤
√
ΨS[x̃],(x̊,̊y),λ(x̃, ỹ).

It follows from (20), (22), and (13) that S[x̃](x̃, ỹ) = S(x̃, ỹ), which, combined
with (16), implies that ΨS[x̃],(̊x,̊y),λ(x̃, ỹ) = ΨS(̊x,̊y),λ(x̃, ỹ). To prove the first
part of the proposition, combine this result with the above inequality.

To simplify the proof of the second part of the proposition, define

ρ̃ =
√
ΨS[x̃],(x̊,̊y),λ(x̃, ỹ), w = (g(x) + λ−1ẙ)−,

r = λ

(
S(x, y)− (0, w)

)
+ (x, y)− (̊x, ẙ).

Since (x, y) is the solution of (23),

λ

(
S[x̃](x, y)− (0, w)

)
+ (x, y)− (̊x, ẙ) = 0, y, w ≥ 0, ⟨y, w⟩ = 0.

Therefore, r = λ(S(x, y)− S[x̃](x, y)). Using also (16), Lemma 4 and the first
part of the proposition we conclude that√

ΨS,(x̊,̊y),λ(x, y) ≤
√
∥r∥2 + 2λ⟨y, w⟩ = λ

∥∥S(x, y)− S[x̃](x, y)
∥∥

≤ λ
(
L0 + ⟨Lg, |y|⟩

2
+
∥Lg∥
6

ρ̃

)
ρ̃2.

Moreover, it follows from the Cauchy-Schwarz inequality, the first part of the
proposition and the definition of ρ̃ that

⟨Lg, |y|⟩ ≤ ⟨Lg, |ỹ|⟩+ ∥Lg∥∥y − ỹ∥ ≤ ⟨Lg, |ỹ|⟩+ ∥Lg∥ρ̃.
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Therefore √
ΨS,(̊x,̊y),λ(x, y) ≤ λ

(
L0 + ⟨Lg, |ỹ|⟩

2
+

2∥Lg∥
3

ρ̃

)
ρ̃2.

Suppose that (x̃, ỹ) ∈ Nθ((̊x, ẙ), λ) with 0 ≤ θ ≤ 1/4. It follows trivially
from this assumption, (25), the definition of ρ̃, and the above inequality, that
the inequality in the second part of the proposition holds. To end the proof of

the second part, let ρ =
√
ΨS[x̃],(̊x,̊y),λ(x, y). Since ρ ≤ θρ̃ ≤ ρ̃/4 and ⟨Lg, |y|⟩ ≤

⟨Lg, |ỹ|⟩+ ∥Lg∥ρ̃,

λ

(
L0 + ⟨Lg, |y|⟩

2
+

2∥Lg∥
3

ρ

)
ρ ≤ λ

(
L0 + ⟨Lg, |ỹ|⟩+ ∥Lg∥ρ̃

2
+

2∥Lg∥
3

ρ̃

4

)
θρ

= λ

(
L0 + ⟨Lg, |ỹ|⟩

2
+

2∥Lg∥
3

ρ̃

)
θρ̃ ≤ θ2,

where the last inequality follows from the assumption (x̃, ỹ) ∈ Nθ((̊x, ẙ), λ)
and (25). To end the proof use the definition of ρ, the above inequality and
(25).

In view of the preceding proposition, for a given (̊x, ẙ) ∈ Rn × Rm and
θ > 0, it is natural to search for λ > 0 and (x, y) ∈ Nθ((̊x, ẙ), λ).

Proposition 7 For any (̊x, ẙ) ∈ Rn×Rm, (x, y) ∈ Rn×Rm
+ , and θ > 0 there

exists λ̄ > 0 such that (x, y) ∈ Nθ((̊x, ẙ), λ) for any λ ∈ (0, λ̄].

Proof The proof follows from the definition (25) and Lemma 3(c).

The neighborhoods Nθ as well as the next defined function will be instru-
mental in the definition and analysis of Algorithm 1, to be presented in the
next section.

Definition 1 For α > 0 and y ∈ Rm, ρ(y, α) stands for the largest root of(
L0 + ⟨Lg, |y|⟩

2
+

2∥Lg∥
3

ρ

)
ρ = α.

Observe that for any λ, θ > 0 and (̊x, ẙ) ∈ Rn × Rm,

Nθ((̊x, ẙ), λ) =
{
(x, y) ∈ Rn × Rm

+

∣∣∣√ΨS,(̊x,̊y),λ(x, y) ≤ ρ (y, θ/λ)
}
. (26)

Moreover, since ρ(y, α) is the largest root of a quadratic it follows that it has
an explicit formula.
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6 A relaxed hybrid proximal extragradient method of multipliers
based on second-order approximations

In this section we consider the smooth convex programming problem (11)
where assumptions O.1, O.2 and O.3 are assumed to hold. Aiming at find-
ing approximate solutions of the latter problem, we propose a new method,
called (relaxed) hybrid proximal extragradient method of multipliers based on
quadratic approximations (hereafter rHPEMM-2o), which is a modification
of Rockafellar’s PMM in the following senses: in each iteration either a re-
laxed extragradient step is executed or a second order approximation of (15)
is solved. More specifically, each iteration k uses the (available) variables

(xk−1, yk−1), (x̃k, ỹk) ∈ Rn × Rm
+ , and λk > 0

to generate

(xk, yk), (x̃k+1, ỹk+1) ∈ Rn × Rm
+ , and λk+1 > 0

in one of two ways. Either
(1) (xk, yk) is obtained from (xk−1, yk−1) via a relaxed extragradient step,

(xk, yk) = (xk−1, yk−1)− τλkvk, vk ∈ (S+NRn×Rm
+
)εk(x̃k, ỹk)

in which case (x̃k+1, ỹk+1) = (x̃k, ỹk) and λk+1 < λk; or
(2) (xk, yk) = (xk−1, yk−1) and the point (x̃k+1, ỹk+1) is the outcome of one
iteration (at (xk, yk)) of Rockafellar’s PMM for problem (21) with x̃ = x̃k and
λ = λk+1.

Next we present our algorithm, where Nθ, f[x̃], g[x̃] and ρ(y, α) are as in
(25), (20), and Definition 1, respectively.
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Algorithm 1: Relaxed hybrid proximal extragradient method of multi-
pliers based on 2nd ord. approx. (r-HPEMM-2o)

initialization: choose (x0, y0) = (x̃1, ỹ1) ∈ Rn × Rm
+ , 0 < σ < 1,

0 < θ ≤ 1/4;

define h := positive root of θ(1 + h′) (1 + h′ (1 + 1/σ))
2
= 1,

τ = h/(1 + h);
choose λ1 > 0 such that (x̃1, ỹ1) ∈ Nθ2((x0, y0), λ1) and set k ← 1

1 if ρ(ỹk, θ
2/λk) ≤ σ∥(x̃k, ỹk)− (xk−1, yk−1)∥ then

2 λk+1 := (1− τ)λk;
3 (x̃k+1, ỹk+1) := (x̃k, ỹk);
4 xk := xk−1 − τλk[∇f(x̃k) +∇g(x̃k)ỹk],

yk := yk−1 + τ [λkg(x̃k) + (λkg(x̃k) + yk−1)−];

5 else

6 λk+1 := (1− τ)−1λk;
7 (xk, yk) := (xk−1, yk−1);
8 (x̃k+1, ỹk+1) :=

arg min
x∈Rn

max
y∈Rm

+

f[x̃k](x) +
⟨
y, g[x̃k](x)

⟩
+
∥x− xk∥2 − ∥y − yk∥2

2λk+1
;

9 end if
10 set k ← k + 1 and go to step 1;

To simplify the presentation of Algorithm 1, we have omitted a stopping
test. First, we discuss its initialization. In the absence of additional information
on the dual variables y, one shall consider the initialization

(x0, y0) = (x̃1, ỹ1) = (x, 0), (27)

where x is “close” to the feasible set. If (x, y) ∈ Rn × Rm
+ an approximated

solution of (12) is available, one can do a “warm start” by setting (x0, y0) =
(x̃1, ỹ1) = (x, y). Note that h > 0 and 0 < τ < 1. Existence of λ1 > 0 as
prescribed in this step follows from the inclusion (x̃1, ỹ1) ∈ Rn×Rm

+ and from
Proposition 7. Moreover, if we compute λ = λ1 > 0 satisfying the inequality(

2∥Lg∥∥S(x0, y0)∥2

3

)
λ3 +

(
L0 + ⟨Lg, |y0|⟩

2
∥S(x0, y0)∥

)
λ2 − θ2 ≤ 0,

where the operator S is defined in (13), use Lemma 3 (c) and Definition 1
we find

√
ΨS,(x0,y0),λ1

(x0, y0) ≤ λ1∥S(x0, y0)∥ ≤ ρ(y0, θ
2/λ1) which, in turn,

combined with the fact that (x̃1, ỹ1) = (x0, y0), gives the inclusion in the
initialization of Algorithm 1.

The computational cost of block of steps [2,3,4] is negligible. The initial-
ization λ1 > 0, together with the update of λk by step 2 or 6 guarantee that
λk > 0 for all k. Therefore, the saddle-point problem to be solved in step 8 is
strongly convex-concave and hence has a unique solution. The computational
burden of the algorithm is in the computation of the solution of this problem.
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We will assume that (x̃1, ỹ1) does not satisfy (12), i.e., the KKT conditions
for (11), otherwise we would already have a solution for the KKT system and
x̃1 would be a solution of (11). For the sake of conciseness we introduce, for
k = 1, . . . , the notation

zk−1 = (xk−1, yk−1), z̃k = (x̃k, ỹk), ρk = ρ(ỹk, θ
2/λk). (28)

Since there are two kinds of iterations in Algorithm 1, its is convenient to have
a notation for them. Define

A := {k ∈ N \ {0} | ρk ≤ σ∥z̃k − zk−1∥}, B := {k ∈ N \ {0} | ρk > σ∥z̃k − zk−1∥}.
(29)

Observe that in iteration k, either k ∈ A and steps 2, 3, 4 are executed, or
k ∈ B and steps 6, 7, 8 are executed.

Proposition 8 For k = 1, . . . ,

(a) z̃k ∈ Nθ2(zk−1, λk);
(b)

√
ΨS,zk−1,λk

(z̃k) ≤ ρk.
(c) zk−1 ∈ Rn × Rm

+ .

Proof We will use induction on k ≥ 1 for proving (a). In view of the initial-
ization of Algorithm 1, this inclusion holds trivially for k = 1. Suppose that
this inclusion holds for k = k0. We shall consider two possibilities.

(i) k0 ∈ A: It follows from Proposition 4 and the update rules in steps 2 and
4 that√
ΨS,zk0

,λk0+1
(z̃k0) ≤

√
ΨS,zk0−1,λk0

(z̃k0) ≤ ρ(ỹk0 , θ
2/λk0) ≤ ρ(ỹk0 , θ

2/λk0+1)

where the second inequality follows from the inclusion z̃k0
∈ Nθ2(zk0−1, λk0

)
and (26); and the third inequality follows from step 2 and Definition 1. It
follows from the above inequalities and (26) that z̃k0 ∈ Nθ2(zk0 , λk0+1). By
step 3, z̃k0+1 = z̃k0 . Therefore, the inclusion of Item (a) holds for k = k0 + 1
in case (i).

(ii) k0 ∈ B: In this case, by step 7, zk0 = zk0−1 and, using definition (29),
the notation (28), and the assumption that the inclusion in Item (a) holds for
k = k0 we conclude that

∥z̃k0 − zk0∥ < ρk0/σ, z̃k0 ∈ Nθ2(zk0 , λk0),
√
ΨS,zk0

,λk0
(z̃k0) ≤ ρk0 .

Direct use of the definitions of h, τ , and step 6 gives λk0+1 = (1 + h)λk0 .

Defining ρ′ =
√
ΨS,zk0

,λk0+1
(z̃k0), it follows from the above inequalities and

from Proposition 5 that,

ρ′ ≤ (1 + h)
√
ΨS,zk0

,λk0
(z̃k0) + h∥z̃k0 − zk0∥ ≤ (1 + h(1 + 1/σ))ρk0 .
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Therefore,

λk0+1

(
L0 + ⟨Lg, |ỹk0 |⟩

2
+

2∥Lg∥
3

ρ′
)
ρ′ ≤ (1 + h)

(
1 + h

(
1 +

1

σ

))2

× λk0

(
L0 + ⟨Lg, |ỹk0 |⟩

2
+

2∥Lg∥
3

ρk0

)
ρk0

= (1 + h)

(
1 + h

(
1 +

1

σ

))2

θ2 = θ,

where we also have used Definition 1 and the definition of h (in the initializa-
tion of Algorithm 1). It follows from the above inequality, the definition of ρ′

and (25) that
z̃k0 ∈ Nθ(zk0 , λk0+1).

Using this inclusion, step 8 and Proposition 6 we conclude that the inclusion
in Item (a) also holds for k = k0 + 1.

Item (b) follows trivially from Item (a), (26) and (28). Item (c) follows
from the fact that y0 ≥ 0, the definitions of steps 3, 4, and the last part of
Proposition 4.

Algorithm 1 as a realization of the large-step r-HPE method

In this subsection, we will show that a subsequence generated by Algorithm 1
happens to be a sequence generated by the large-step r-HPE method described
in (9) for solving a monotone inclusion problem associated with (11). This
result will be instrumental for evaluating (in the next section) the iteration-
complexity of Algorithm 1. In fact, we will prove that iterations with k ∈
A, where steps 2, 3, 4 are executed, are large-step r-HPE iterations for the
monotone inclusion problem

0 ∈ T (z) :=
(
S+NRn×Rm

+

)
(z), z = (x, y) ∈ Rn × Rm, (30)

where the operator S is defined in (13).
Define, for k = 1, 2, . . . ,

wk = (g(x̃k) + λ−1
k yk−1)−, vk = S(z̃k)− (0, wk), εk = ⟨ỹk, wk⟩, (31)

where z̃k is defined in (28). We will show that, whenever k ∈ A, the variables
z̃k, vk, and εk provide an approximated solution of the proximal inclusion-
equation system

v ∈ (S+NRn×Rm
+
)(z), λkv + z − zk−1 = 0,

as required in the first line of (9). We divided the proof of this fact in two
parts, the next proposition and the subsequent lemma.

Proposition 9 For k = 1, 2, . . .,
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(a) −(0, wk) ∈ ∂εkδRn×Rm
+
(z̃k) = N

[εk]
Rn×Rm

+
(z̃k);

(b) vk ∈ (S+N
[εk]
Rn×Rm

+
)(z̃k) ⊂ (S+NRn×Rm

+
)[εk](z̃k);

(c) ∥λkvk + z̃k − zk−1∥2 + 2λkεk = ΨS,zk−1,λk
(z̃k) ≤ ρ2k.

Proof Items (a), (b) and the equality in Item (c) follow from definitions (28),
(31) and Items (a) and (b) of Lemma 2. The inequality in Item (c) follows
from Proposition 8(b).

Define

Ak := {j ∈ N | j ≤ k, steps 2, 3, 4 are executed at iteration j},
Bk := {j ∈ N | j ≤ k, steps 6, 7, 8 are executed at iteration j}

(32)

and observe that

A =
∪
k∈N

Ak, B =
∪
k∈N

Bk.

From now on, #C stands for the number of elements of a set C. To further
simplify the converge analysis, define

I = {i ∈ N | 1 ≤ i ≤ #A}, k0 = 0, ki = i-th element of A. (33)

Note that k0 < k1 < k2 · · · , A = {ki | i ∈ I} and, in view of (29) and step 7
of Algorithm 1,

zk = zki−1
, for ki−1 ≤ k < ki, ∀i ∈ I. (34)

In particular, we have

zki−1 = zki−1 ∀i ∈ I. (35)

In the next lemma we show that for indexes in the set A, Algorithm 1
generates a subsequence which can be regarded as a realization of the large-
step r-HPE method described in (9), for solving the problem (30).

Lemma 5 The sequences (zki)i∈I , (z̃ki)i∈I , (vki)i∈I , (εki)i∈I , (λki)i∈I are
generated by a realization of the r-HPE method described in (9) for solving
(30), that is, 0 ∈ (S+NRn×Rm

+
)(z), in the following sense: for all i ∈ I,

vki ∈ (S+N
[εki

]

Rn×Rm
+
)(z̃ki) ⊂ (S+NRn×Rm

+
)[εki

](z̃ki),

∥λkivki + z̃ki − zki−1∥2 + 2λkiεki ≤ ρ2ki
≤ σ2∥z̃ki − zki−1∥2,

zki = zki−1 − τλkivki .

(36)

Moreover, if I is finite and iM := max I then zk = zkiM
for k ≥ kiM .
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Proof The two inclusions in the first line of (36) follow trivially from Proposi-
tion 9(b). The first inequality in the second line of (36) follows from (35) and
Proposition 9(c); the second inequality follows from the inclusion ki ∈ A, (29),
step 1 of Algorithm 1 and (35). The equality in the last line of (36) follows
from the inclusion ki ∈ A, (29) step 4 of Algorithm 1, (35) and (31). Finally,
the last statement of the lemma is a direct consequence of (28), (29) and step
7 of Algorithm 1.

As we already observed in Proposition 2, (30) and (12) are equivalent, in
the sense that both problems have the same solution set. From now on we will
use the notation K for this solution set, that is,

K =
(
S+NRn×Rm

+

)−1

(0)

= {(x, y) ∈ Rn × Rm | ∇f(x) +∇g(x)y = 0, g(x) ≤ 0, y ≥ 0, ⟨y, g(x)⟩ = 0} .
(37)

We assumed in (O.3) that this set is nonempty. Let z∗ = (x∗, y∗) be the
projection of z0 = (x0, y0) onto K and d0 the distance from z0 to K,

z∗ ∈ K, d0 = ∥z∗ − z0∥ = min
z∈K
∥z − z0∥. (38)

To complement Lemma 5, we will prove that the large-step condition for the
large-step r-HPE method (stated in Theorem 1) is satisfied for the realization
of the method presented in Lemma 5. Define

c :=
L0 + ⟨Lg, |y0|⟩

2
+

[
1

2
+

1/2 + 2σ/3√
1− σ2

]
d0∥Lg∥, η :=

θ2

σc
. (39)

Proposition 10 Let z∗ ∈ K and d0, and η as in (38), and (39), respectively.
For all i ∈ I,

∥z∗ − zki∥ ≤ d0, ∥z∗ − z̃ki∥ ≤
d0√
1− σ2

, ∥z̃ki − zki−1∥ ≤
d0√
1− σ2

. (40)

As a consequence,

λki∥z̃ki − zki−1∥ ≥ η. (41)

Proof Note first that (40) follows from Lemma 5, items (c) and (d) of Propo-
sition 1, (35) and (38). Using (28), (29), (33) and step 1 of Algorithm 1 we
obtain

σ∥z̃ki − zki−1∥ ≥ ρ(ỹki , θ
2/λki) ∀i ∈ I,

which, in turn, combined with the definition of ρ(·, ·) (see Definition 1) yields(
L0 + ⟨Lg, |ỹki

|⟩
2

+
2∥Lg∥

3
σ∥z̃ki

− zki−1∥
)
σ∥z̃ki

− zki−1∥ ≥
θ2

λki

∀i ∈ I.

(42)



22 M. Marques Alves et al.

Using the triangle inequality, (38) and the second inequality in (40) we obtain

∥z0 − z̃ki∥ ≤ d0 + ∥z∗ − z̃ki∥ ≤ d0
(
1 +

1√
1− σ2

)
.

Now, using the latter inequality, the fact that ∥z0 − z̃ki∥ ≥ ∥y0 − ỹki∥ (∀i ∈ I)
and the triangle inequality we find

⟨Lg, |ỹki |⟩ ≤ ∥Lg∥∥z0 − z̃ki∥+ ⟨Lg, |y0|⟩

≤ d0∥Lg∥
(
1 +

1√
1− σ2

)
+ ⟨Lg, |y0|⟩ ∀i ∈ I. (43)

To finish the proof of (41), use (35), substitute the terms in the right hand
side of the last inequalities in (40) and (43) in the term inside the parentheses
in (42) and use (39).

7 Complexity analysis

In this section we study the pointwise and ergodic iteration-complexity of
Algorithm 1. The main results are (essentially) a consequence of Lemma 5 and
Proposition 10 which guarantee that the (sub)sequences (zki)i∈I , (z̃ki)i∈I , . . .
can be regarded as realizations of the large-step r-HPE method of Section 2,
for which pointwise and ergodic iteration-complexity results are known.

To study the ergodic iteration-complexity of Algorithm 1 we need to define
the ergodic sequences associated to (λki)i∈I , (z̃ki)i∈I , (vki)i∈I and (εki)i∈I ,
respectively (see (10)), namely

Λi := τ

i∑
j=1

λkj ,

z̃ a
i = (x̃ai , ỹ

a
i ) :=

1

Λi
τ

i∑
j=1

λkj z̃kj , v a
i :=

1

Λi
τ

i∑
j=1

λkjvkj ,

ε a
i :=

1

Λi
τ

i∑
j=1

λkj (εkj + ⟨z̃kj − z̃ a
i , vkj − v a

i ⟩).

(44)

Define also

L (x, y) :=

{
f(x) + ⟨y, g(x)⟩, y ≥ 0

−∞, otherwise.
(45)

Observe that that a pair (x, y) ∈ K, i.e., it is a solution of the KKT system
(12) if and only if (0, 0) ∈ ∂(L (·, y) −L (x, ·))(x, y). Since (30) and (12) are
equivalent, the latter observation leads us to consider in this section the notion
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of approximate solution for (30) which consists in: for given tolerances δ > 0
and ε > 0 find ((x, y), v, ε) such that

v ∈ ∂ε(L (·, y)−L (x, ·))(x, y), ∥v∥ ≤ δ, ε ≤ ε. (46)

We will also consider as approximate solution of (30) any triple ((x, y), (p, q), ε)
such that ∥(p, q)∥ ≤ δ, ε ≤ ε and

p = ∇f(x) +∇g(x)y, g(x) + q ≤ 0, y ≥ 0, ⟨y, g(x) + q⟩ = −ε (47)

or

p ∈ ∂x,ε′L (x, y), g(x) + q ≤ 0, y ≥ 0, ⟨y, g(x) + q⟩ ≥ −ε, (48)

where ε′ := ε+ ⟨y, g(x) + q⟩.
It is worthing to compare the latter two conditions with (12) and also note

that whenever ε′ = 0 then (48) reduces to (47), that is, the latter condition is
a special case of (48). Moreover, as Theorems 3 and 4 will show, (47) and (48)
are related to the pointwise and ergodic iteration-complexity of Algorithm 1,
respectively.

We start by studying rates of convergence of Algorithm 1.

Theorem 2 Let (z̃ki)i∈I = ((x̃ki , ỹki))i∈I , (vki)i∈I and (εki)i∈I be (sub)sequences
generated by Algorithm 1 where the the set of indexes I is defined in (33). Let
also (z̃ai )i∈I = ((x̃ai , ỹ

a
i ))i∈I , (v

a
i )i∈I and (εai )i∈I be as in (44). Then, for any

i ∈ I,
(a) [pointwise] there exists j ∈ {1, . . . , i} such that

vkj ∈ ∂εkj

(
L (·, ỹkj )−L (x̃kj , ·)

)
(x̃kj , ỹkj ) (49)

and ∥∥vkj

∥∥ ≤ d20
iτ(1− σ)η

, εkj ≤
σ2d30

(iτ)3/2(1− σ2)3/22η
; (50)

(b) [pointwise] there exists j ∈ {1, . . . , i} and (pj , qj) ∈ Rn × Rm such that

pj = ∇f(x̃kj ) +∇g(x̃kj )ỹkj ,

g(x̃kj ) + qj ≤ 0, ỹkj ≥ 0, ⟨ỹkj , g(x̃kj ) + qj⟩ = −εkj

(51)

and

∥(pj , qj)∥ ≤
d20

iτ(1− σ)η
, εkj ≤

σ2d30
(iτ)3/2(1− σ2)3/22η

; (52)

(c) [ergodic] we have

vai ∈ ∂εai
(

L (·, ỹai )−L (x̃ai , ·)
)
(x̃ai , ỹ

a
i ) (53)

and

∥vai ∥ ≤
2d20

(iτ)3/2(
√
1− σ2)η

, εai ≤
2d30

(iτ)3/2(1− σ2)η
; (54)



24 M. Marques Alves et al.

(d) [ergodic] there exists (pai , q
a
i ) ∈ Rn × Rm such that

pai ∈ ∂x,ε′i L (x̃ai , ỹ
a
i ),

g(x̃ai ) + qai ≤ 0, ỹai ≥ 0, ⟨ỹai , g(x̃ai ) + qai ⟩ ≥ −εai
(55)

and

∥(pai , qai )∥ ≤
2d20

(iτ)3/2(
√
1− σ2)η

, εai ≤
2d30

(iτ)3/2(1− σ2)η
, (56)

where ε′i := εai + ⟨ỹai , g(x̃ai ) + qai ⟩.

Proof We first prove Items (a) and (c). Using Lemma 5, the last statement in
Proposition 10 and (30) we have that Items (a) and (b) of Theorem 1 hold for
the sequences (z̃ki)i∈I , (vki)i∈I and (εki)i∈I . As a consequence, to finish the
proof of Items (a) and (c) of the theorem, it remains to prove the inclusions
(49) and (53). To this end, note first that from the equivalence between Items
(a) and (c) of Proposition 12 (with ε′ = 0) we have the following equivalence
for all i ∈ I

vki ∈ (S+N
[εki

]

Rn×Rm
+
)(x̃ki , ỹki) ⇐⇒ vki ∈ ∂εki

(
L (·, ỹki)−L (x̃ki , ·)

)
(x̃ki , ỹki).

Hence, using the latter equivalence, the first inclusion in (the first line) of (36),
the inclusion in Theorem 1(a), the remark after the latter theorem, and (30)
we obtain (49). Likewise, using an analogous reasoning and Proposition 13 we
also obtain (53), which finishes the proof of Items (a) and (c).

We claim that Item (b) follows from Item (a). Indeed, letting (pi, qi) := vki

(for all i ∈ I), using the definition of vkj and εkj in (31), the definition of
S in (13) and the equivalence between Items (a) and (b) of Proposition 12
(with ε′ = 0) we obtain that (pj , qj) := vkj satisfies (51) and (52). Using an
analogous reasoning we obtain that Item (d) follows from Item (c).

Next we analyze the sequence generated by Algorithm 1 for the set of
indexes k ∈ B. Direct use of Algorithm 1’s definition shows that

λk+1 =

(
1

1− τ

)#Bk−#Ak

λ1 ∀k ≥ 1. (57)

Define

ρ =
2θ2

λ1

L0

2
+

√(
L0

2

)2

+
8∥Lg∥θ2

3λ1

 . (58)

In the next proposition we obtain a rate of convergence result for the
sequence generated by Algorithm 1 with k ∈ B.
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Proposition 11 Let ρk for all k ≥ 1 be as in (28) and let also ρ̄ > 0 be as in
(58). Then, for all k ∈ B,

vk ∈ ∂εk
(

L (·, ỹk)−L (x̃k, ·)
)
(x̃k, ỹk)

and

∥vk∥ ≤
(1 + 1/σ)ρk

λk
, εk ≤

ρ2k
2λk

.

Moreover, if λk ≥ λ1 then ρk ≤ ρ.

Proof First note that the desired inclusion follows from Proposition 9(b) and
the equivalence between items (a) and (c) of Proposition 12. Moreover, by
Proposition 9 (c) we have

∥λkvk + z̃k − zk−1∥2 + 2λkεk ≤ ρ2k ∀k ≥ 1.

Note that the desired bound on εk is a direct consequence of the latter inequal-
ity. Moreover, this inequality combined with the definition of B (see (29)) gives
∥λkvk∥ ≤ ∥λkvk + z̃k − zk−1∥+∥z̃k − zk−1∥ ≤ (1+1/σ)ρk for all k ∈ B, which
proves the desired bound on ∥vk∥.

Assume now that λk ≥ λ1. Using Definition 1 and (28) we obtain for all
k ≥ 1

ρk = ρ(ỹk, θ
2/λk) =

2θ2

λk

L0 + ⟨Lg, |ỹk|⟩
2

+

√(
L0 + ⟨Lg, |ỹk|⟩

2

)2

+
8∥Lg∥θ2

3λk

 ,

which, in turn, combined with (58), the assumption that λk ≥ λ1 and the fact
that ⟨Lg, |ỹk|⟩ ≥ 0 gives ρk ≤ ρ̄.

Next we present the two main results of this paper, namely, the pointwise
and ergodic iteration-complexities of Algorithm 1.

Theorem 3 (pointwise iteration-complexity) For given tolerances δ > 0
and ε > 0, after at most

M := 2

⌈
max

{
d20

δτ(1− σ)η
,

σ4/3d20
ε2/3τ(1− σ2)(2η)2/3

}⌉
+

⌈
max

{
log+

(
(1 + 1/σ)ρ/(δλ1)

)
, log+

(
ρ2/(2ελ1)

)}
log(1/(1− τ))

⌉
(59)

iterations, Algorithm 1 finds ((x, y), v, ε) satisfying (46) with the property that
((x, y), (p, q), ε) where (p, q) := v also satisfies

p = ∇f(x) +∇g(x)y, g(x) + q ≤ 0, y ≥ 0, ⟨y, g(x) + q⟩ = −ε,
∥(p, q)∥ ≤ δ, ε ≤ ε.

(60)
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Proof First define

M1 :=

⌈
max

{
d20

δτ(1− σ)η
,

σ4/3d20
ε2/3τ(1− σ2)(2η)2/3

}⌉
and M2 :=M − 2M1.

(61)

The proof is divided in two cases: (i) #A ≥M1 and (ii) #A < M1 . In the first
case, the existence of ((x, y), v, ε) (resp. ((x, y), (p, q), ε)) satisfying (46) (resp.
(60)) in at most M1 iterations follows from Theorem 2(a) (resp. Theorem
2(b)). Since M = 2M1 +M2 ≥M1, it follows that, in this case, the number of
iterations is not bigger than M .

Consider now the case (ii) and let k∗ ≥ 1 be such that #A = #Ak∗ = #Ak

for all k ≥ k∗. As a consequence of the latter property and the fact that
#A < M1 we conclude that if #Bk ≥M1 +M2, for some k ≥ k∗, then

βk := #Bk −#Ak ≥ #Bk −M1 ≥M2. (62)

Using the latter inequality, (59) and (61) we find

βk ≥M2 ≥
max

{
log+

(
(1 + 1/σ)ρ/(δλ1)

)
, log+

(
ρ2/(2ελ1)

)}
log(1/(1− τ))

,

which is clearly equivalent to

log

((
1

1− τ

)βk

λ1

)
+ log

(
1

(1 + 1/σ)ρ̄

)
≥ log

(
1

δ̄

)
, (63)

log

((
1

1− τ

)βk

λ1

)
+ log

(
2

ρ̄2

)
≥ log

(
1

ε̄

)
. (64)

Now using the definition in (62), (63) (resp. (64)) and (57) we obtain log(λk/[(1+
1/σ)ρ̄]) ≥ log(1/δ̄) (resp. log(2λk/ρ̄

2) ≥ log(1/ε̄)) which yields

(1 + 1/σ)ρ̄

λk
≤ δ̄

(
resp.

ρ̄2

2λk
≤ ε̄
)
.

It follows from the latter inequality and Proposition 11 that ((x, y), v, ε) :=
((x̃k, ỹk), vk, εk) satisfies (46) and, due to Proposition 12, that ((x, y), (p, q), ε) :=
((x̃k, ỹk), vk, εk) satisfies (60). Since the index k has been chosen to satisfy
#Ak < M1 and #Bk ≥ M1 + M2 we conclude that the total number of
iterations is at most M1 + (M1 +M2) =M .

Theorem 4 (ergodic iteration-complexity) For given tolerances δ > 0
and ε > 0, after at most

M̃ := 2

⌈
max

{
22/3d

4/3
0

δ
2/3
τ
(
η
√
1− σ

)2/3 , 22/3d20

ε2/3τ (η(1− σ2))
2/3

}⌉

+

⌈
max

{
log+

(
(1 + 1/σ)ρ/(δλ1)

)
, log+

(
ρ2/(2ελ1)

)}
log(1/(1− τ))

⌉
(65)
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iterations, Algorithm 1 finds ((x, y), v, ε) satisfying (46) with the property that
((x, y), (p, q), ε) where (p, q) := v also satisfies

p ∈ ∂x,ε′L (x, y), g(x) + q ≤ 0, y ≥ 0, ⟨y, g(x) + q⟩ ≥ −ε,
∥(p, q)∥ ≤ δ, ε ≤ ε,

(66)

where ε′ := ε+ ⟨y, g(x) + q⟩.

Proof The proof follows the same outline of Theorem 3’s proof.

A Appendix

Proposition 12 Let (x̃, ỹ) ∈ Rn×Rm
+ , v = (p, q) ∈ Rn×Rm and ε ≥ 0 be given and define

w := −(g(x̃) + q), ε′ := ε− ⟨ỹ, w⟩. (67)

The following conditions are equivalent:

(a) v ∈ ∂ε
(
L (·, ỹ)− L (x̃, ·)

)
(x̃, ỹ);

(b) w ≥ 0, ⟨ỹ, w⟩ ≤ ε, p ∈ ∂x,ε′L (x̃, ỹ);

(c) 0 ≤ ε′ ≤ ε and −w ∈ N
[ε−ε′]
Rm
+

(ỹ), p ∈ ∂x,ε′L (x̃, ỹ).

Proof (a) ⇐⇒ (b). Note that the inclusion in (a) is equivalent to

L (x, ỹ)− L (x̃, y) ≥ ⟨p, x− x̃⟩+ ⟨q, y − ỹ⟩ − ε ∀(x, y) ∈ Rn × Rm
+ , (68)

which, in view of (45) and (67), is equivalent to

L (x, ỹ)− L (x̃, ỹ) + inf
y≥0

⟨w, y⟩ ≥ ⟨p, x− x̃⟩ − ε′ ∀x ∈ Rn.

The latter inequality is clearly equivalent to (b).
(b) ⇐⇒ (c). Using (17), the fact that ỹ ≥ 0 and the definition of ε′ in (67) we obtain

that the first inequality in (b) is equivalent to ε′ ≤ ε and the second inequality in (c). To
finish the proof note that the second inequality in (b) is equivalent to ε′ ≥ 0.

Proposition 13 Let X ⊂ Rn and Y ⊂ Rm be given convex sets and Γ : X × Y → R be a
function such that, for each (x, y) ∈ X × Y , the function Γ (·, y) − Γ (x, ·) : X × Y → R is
convex. Suppose that, for j = 1, . . . , i, (x̃j , ỹj) ∈ X × Y and (pj , qj) ∈ Rn × Rm satisfy

(pj , qj) ∈ ∂εj (Γ (·, ỹj)− Γ (x̃j , ·)) (x̃j , ỹj) .

Let α1, · · · , αi ≥ 0 be such that
∑i

j=1 αj = 1, and define

(x̃a
i , ỹ

a
i ) =

i∑
j=1

αj(x̃j , ỹj), (pai , q
a
i ) =

i∑
j=1

αj(pj , qj),

εai =
i∑

j=1

αj [εj + ⟨x̃j − x̃a
i , pj⟩+ ⟨ỹj − ỹai , qj⟩] .

Then, εai ≥ 0 and

(pai , q
a
i ) ∈ ∂εai (Γ (·, ỹai )− Γ (x̃a

i , ·)) (x̃a
i , ỹ

a
i ) .

Proof See [6, Proposition 5.1] .
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Castorina 110, Rio de Janeiro, RJ Brasil 22460-320, 2013.

15. M. V. Solodov and B. F. Svaiter. A globally convergent inexact Newton method for sys-
tems of monotone equations. In Reformulation: nonsmooth, piecewise smooth, semismooth
and smoothing methods (Lausanne, 1997), volume 22 of Appl. Optim., pages 355–369.
Kluwer Acad. Publ., Dordrecht, 1999.

16. M. V. Solodov and B. F. Svaiter. A hybrid approximate extragradient-proximal point
algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal.,
7(4):323–345, 1999.

17. M. V. Solodov and B. F. Svaiter. A hybrid projection-proximal point algorithm. J.
Convex Anal., 6(1):59–70, 1999.

18. M. V. Solodov and B. F. Svaiter. Error bounds for proximal point subproblems and
associated inexact proximal point algorithms. Math. Program., 88(2, Ser. B):371–389,
2000. Error bounds in mathematical programming (Kowloon, 1998).

19. M. V. Solodov and B. F. Svaiter. A truly globally convergent Newton-type method
for the monotone nonlinear complementarity problem. SIAM J. Optim., 10(2):605–625
(electronic), 2000.

20. M. V. Solodov and B. F. Svaiter. A unified framework for some inexact proximal point
algorithms. Numer. Funct. Anal. Optim., 22(7-8):1013–1035, 2001.

21. M. V. Solodov and B. F. Svaiter. A new proximal-based globalization strategy for the
Josephy-Newton method for variational inequalities. Optim. Methods Softw., 17(5):965–
983, 2002.



Title Suppressed Due to Excessive Length 29

22. B. F. Svaiter. Complexity of the relaxed hybrid proximal-extragradient method under
the large-step condition. Preprint A766/2015, IMPA - Instituto Nacional de Matemática
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