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1 Introduction

Monotone inclusion problems (MIPs) are inclusion problems for maximal monotone point-to-set oper-
ators and occur in different fields of applied mathematics, including optimization, equilibrium theory
and variational inequalities. A classical scheme for solving MIPs is the proximal point method (PPM),
proposed by Martinet [1] and further developed by Rockafellar [2], an iterative method where the current
iterate is used to construct a regularized version of the original problem, namely, the proximal subprob-
lem, whose approximate solution is taken as the next iterate. Convergence of the generated sequence
requires summable errors, that is, the sum of the errors in the computation of the approximate solution
of each proximal subproblem must be finite.

The hybrid proximal extragradient (HPE) method [3,4], another scheme for solving MIPs, proposed
by Solodov and Svaiter, is a modification of the PPM which, instead of summable errors, requires for
its convergence each proximal subproblem to be approximately solved within a relative error tolerance.
An additional feature of the HPE is that it also allows the relaxation of the inclusion by means of the
ε-enlargement of maximal monotone operators proposed in [5]. Complexity iteration of the HPE method
was determined by Monteiro and Svaiter in [6], while the use of the HPE method as a framework for the
design of new methods as well as for the complexity analysis of existing methods was presented in [6–14].
In particular, pointwise and ergodic iteration complexity of Tseng’s modified forward-backward splitting
(MFBS) method, Kopelevich’s method and the alternating direction method of multipliers (ADMM)
in [6,12].
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The aim of this work is to present a variant of the HPE specially adapted for solving MIPs for
operators that can be decomposed as the sum of a strongly monotone and a monotone operator. MIPs
are, in general, ill-posed; however, MIPs for strongly monotone operators are always well-posed. For this
reason, problems in the first class have been approximated, in practical applications, by problems in
the latter one by regularization procedures, a technique which goes back to the work of Tikhonov [15].
Hence, it is interesting to design numerical schemes for strongly monotone MIPs which are able to exploit
the strong monotonicity of the problem under consideration. With this in mind, we modify the HPE’s
error criterion and iteration. Whereas the HPE method defines the new iterate as an extragradient
step from the current iterate using the image of the (enlargement of the) operator at the approximate
solution of the proximal (prox.) subproblem, the method proposed here defines the new iterate as a
convex combination of the extragradient step and the approximate solution of the prox. subproblem.
When the strong monotonicity parameter is zero, our algorithm reduces to the HPE method. Like in the
HPE theory, we also make use of the notion of ε-enlargement of Burachik, Iusem and Svaiter [5] to relax
the inclusion in each subproblem. Likewise, ε-enlargements are used, as in [6], to define the concept of
approximate solution that we will consider in this paper. Moreover, based on a family of simple quadratic
functions, defined by points in the graph of the strongly monotone component of our operator, we obtain
several descent results (see Proposition 3.1) for the sequence generated by the method proposed here.

As applications, we consider two special MIPs in which the strongly monotone component is also
(point-to-point) Lipschitz continuous, one in which the monotone component is an arbitrary maximal
monotone operator and the other one in which the monotone component is a normal cone. For the
first one, we propose and analyze a variant of the Tseng’s MFBS method, which exploits the strong
monotonicity assumption (in the case that the strong monotonicity parameter is zero, it reduces to
the Tseng’s method). We obtain rates of convergence and iteration-complexity results by showing that
this method is a special case of our method. On the other hand, in the case of variational inequality
problems (VIPs) for strongly monotone operators, we propose and analyze a variant of the Korpelevich
extragradient method.

Nesterov and Scrimalli proposed and analyzed in [16] a method for solving strongly monotone vari-
ational inequalities with Lipschitz continuous operators. It worth to mention that, while the variant of
the Tseng’s MFBS method proposed here computes one resolvent/projection per iteration, their method
computes two projections per iteration. Moreover, both methods have the same iteration-complexity.

This paper is organized as follows. In Section 2, we review some basic concepts on set-valued maps,
maximal monotone operators, ε-enlargements, subdifferentials as well as some of their properties which
we will use in this paper. In Section 3, we present a variant of the HPE method for strongly MIPs, namely
Algorithm 1, and establish its convergence rates for general stepsizes as well as for stepsizes bounded
away from zero. Section 4 is devoted to the presentation, convergence analysis, and iteration-complexity
analysis of a variant of the Tseng’s MFBS method for solving MIPs with strongly monotone operators.
In Section 5, we present a variant of the Korpelevich extragradient method for solving strongly monotone
VIPs.

2 Basic Concepts and Notation

LetX be a real Hilbert space with inner product ⟨·, ·⟩ and induced norm ∥·∥ :=
√
⟨·, ·⟩. Given a set-valued

operator S : X ⇒ X, its graph and domain are, respectively,

Gr(S) := {(x, v) ∈ X ×X : v ∈ S(x)}, Dom(S) := {x ∈ X : S(x) ̸= ∅}.

The inverse of S : X ⇒ X is S−1 : X ⇒ X, S−1(v) = {x : v ∈ S(x)}.
In this work, we are concerned with algorithms for solving strongly monotone inclusion problems, that

is, inclusion problems for strongly (maximal) monotone operators, a special class of set-valued operators
with several applications in applied mathematics and optimization. In what follows in this section, we
will review some of the basic concepts of this class of operators.

An operator A : X ⇒ X is η-strongly monotone iff η ≥ 0 and

⟨v − v′, x− x′⟩ ≥ η∥x− x′∥2 ∀(x, v), (x′, v′) ∈ Gr(A). (1)

If η = 0 in the above inequality, then A is said to be a monotone operator. Moreover, A : X ⇒ X is
maximal monotone iff it is monotone and maximal in the following sense: if B : X ⇒ X is monotone
and Gr(A) ⊂ Gr(B), then A = B. The resolvent of a maximal monotone operator A : X ⇒ X with
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parameter λ > 0 is (I + λA)−1. It follows directly from this definition that y = (I + λA)−1x if and only
if x− y ∈ λA(y). The sum of two set-valued operators S, S′ : X ⇒ X is defined by

S + S′ : X ⇒ X, (S + S′)(x) := {s+ s′ ∈ X : s ∈ S(x), s′ ∈ S(x)}.

It is easy to see that, if A : X ⇒ X is η-strongly monotone and B : X ⇒ X is monotone, then the sum
A+B is also η-strongly monotone. In particular, the sum of two monotone operators is also a monotone
operator.

Recall that the ε-subdifferential [17] of a closed convex function f : X → R is defined at x ∈ X as

∂εf(x) := {v ∈ X : f(x′) ≥ f(x) + ⟨v, x′ − x⟩ − ε ∀x′ ∈ X}.

When ε = 0, then ∂f0(x) is denoted by ∂f(x) and is called the subdifferential of f at x. The set-valued
operator ∂εf : X ⇒ X with ε ≥ 0 is an enlargement of ∂f (in the sense that ∂f(x) ⊂ ∂fε(x) for every
x ∈ X) which has better topological properties than ∂f (see [17]). The simplest example of subdifferential
is given by considering indicator functions of closed convex sets. Given a closed convex set C ⊂ X, its
indicator function is denoted by δC and is defined as δC(x) = 0 if x ∈ C and δC(x) =∞ otherwise, and
its normal cone is defined as NC = ∂δC . We also denote the projection on C by PC .

Using the above definitions, it is easy to check the following transportation formula:

v ∈ ∂f(x) ⇒ v ∈ ∂εf(x′), ε := f(x′)− [f(x) + ⟨v, x′ − x⟩]. (2)

A generalization of the concept of ε-enlargement (of subgradients of convex functions) for arbitrary
maximal monotone operators was introduced and studied in [5]. Given B : X ⇒ X maximal monotone
and ε ≥ 0, the ε-enlargement of B is defined by

B[ε] : X ⇒ X, B[ε](x) := {v ∈ X : ⟨v − v′, x− x′⟩ ≥ −ε ∀(x′, v′) ∈ Gr(B)}. (3)

The following summarizes some useful properties of B[ε].

Proposition 2.1 Let A,B : X ⇒ X be maximal monotone operators. Then,

(a) if ε1 ≤ ε2, then A[ε1](x) ⊆ A[ε2](x) for every x ∈ X;
(b) A[ε′](x) + (B)[ε](x) ⊆ (A+B)[ε

′+ε](x) for every x ∈ X and ε, ε′ ≥ 0;
(c) A is monotone if, and only if, A ⊆ A[0];
(d) A is maximal monotone if, and only if, A = A[0];
(e) if f : X → R is convex, proper and lower semicontinuous, then ∂εf(x) ⊂ (∂f)[ε](x) for any ε ≥ 0

and x ∈ X.

3 Solving Inclusions with Strongly Monotone Operators

In this section, we consider the monotone inclusion problem (MIP)

0 ∈ A(x) +B(x), (4)

where the following assumptions hold:

A.1) A : X ⇒ X is (maximal) η-strongly monotone, i.e, it is maximal monotone and there exists η ≥ 0
satisfying the condition (1);

A.2) B : X ⇒ X is maximal monotone;
A.3) the solution set of (4), i.e., (A+B)−1(0), is nonempty.

Since by the assumptions A.1 and A.2 the sum A+B is also η-strongly monotone, it follows that (4) is
an inclusion for a strongly monotone operator, i.e., a strongly MIP.

The complexity results presented in this paper will consist in establishing bounds in the number of
iterations to obtain a pair (y, v) and a scalar ε ≥ 0 such that

v ∈ A(y) +B[ε](y), ∥v∥ ≤ ρ̄ and ε ≤ ε̄, (5)

for given precisions ρ̄ > 0 and ε̄ > 0. Such bounds will depend on the distance of the initial iterate (for
the methods presented here) to the solution set of (4) and on the parameter η. Stronger bounds will be
reached for the case that A is η-strongly monotone with parameter η > 0. On the other hand, in the case
η = 0, (or in the “limit” case η → 0) our results will be special cases of the ones obtained in [6].
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An exact proximal point method (PPM) iteration for problem (4) is

xk = (λk(A+B) + I)−1xk−1

where xk−1 is the current iterate, xk the new iterate, and λk > 0. To compute (λ(A + B) + I)−1 for
λ > 0 is, in general, almost as hard (or as hard) as computing (A + B)−1. So, the use of approximate
solutions of this problem must be considered. To decouple the inclusion and the equality, note that the
above equation is equivalent to

vk ∈ (A+B)(xk), λkvk + xk − xk−1 = 0. (6)

An HPE iteration for problem (4) is

find λk > 0, yk, vk and εk such that

vk ∈ (A+B)[εk](yk), ∥λkvk + yk − xk−1∥2 + 2λkεk ≤ σ2∥yk − xk−1∥2,
define xk = xk−1 − λkvk.

where 0 ≤ σ < 1 is a relative error tolerance. The scalar εk may be implicitly determined (see the
analysis of Korpelevich’s method in [6]). In this paper, we propose a variant of the HPE method, namely
Algorithm 1, which takes into account the fact that the operator A in (4) is η-strongly monotone.

We will now state our method.

Algorithm 1: A HPE method for strongly monotone inclusions

(0) Let x0 ∈ X and σ ∈ [0, 1[ be given and set k = 1;
(1) choose λk > 0 and find yk, vk ∈ X, σk ∈ [0, σ], and εk ≥ 0 such that

vk ∈ A(yk) +B[εk](yk) ,
∥λkvk + yk − xk−1∥2

1 + 2λkη
+ 2λkεk ≤ σ2

k∥yk − xk−1∥2; (7)

(2) set

xk =
(xk−1 − λkvk) + 2λkηyk

1 + 2λkη
, (8)

let k ← k + 1 and go to step 1.

end

Note that Algorithm 1 does not specify how to compute λk, σk, εk, yk, and vk satisfying (7). This
indetermination adds generality to this method and we will be able, almost effortlessly, to define two
new implementable algorithms for solving strongly monotone inclusion problems in Sections 4 and 5,
namely, a Tseng’s MFBS-like method for (4) when A is also Lipschitz continuous and the resolvent of B
is easy to compute, and a Korpelevich’s-like method for strongly variational inequalities with Lipschitz
continuous strongly monotone operators.

As in the HPE method, the error criterion (7) relaxes the inclusion and the equation in (6) by
allowing errors relative to the term ∥yk − xk−1∥, However, the new iterate xk is given in (8) as a convex
combination of the extragradient step xk−1 − λkvk and the vector yk. Since by Proposition 2.1(b,d)
A(yk) + B[εk](yk) ⊂ (A + B)[εk](yk), if η = 0 then Algorithm 1 reduces to the HPE method applied
to (4), for which convergence and complexity results were presented, respectively, in [3] and [6].

From now on in this section, {xk}, {yk}, {vk}, {λk}, {σk} and {εk} are sequences generated by
Algorithm 1. Define, for k = 1, 2, . . .

γk : X → R, γk(x
′) := ⟨vk, x′ − yk⟩+ η∥x′ − yk∥2 − εk ∀x′ ∈ X. (9)

Algorithm 1 is a “memory-less” method, in the sense that the unique information which is passed
along the iterations is the current iterate. However, for analyzing it, we will define objects which gather
aggregate data generated during the past iterations. Define also

µ0 := 1, µk :=
k∏

i=1

(1 + 2λiη) . (10)

In next proposition, we obtain some descent bounds for Algorithm 1. Special attention should be given
for the item (d), which will be crucial for obtaining pointwise convergence rates.
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Proposition 3.1 Let γk(·) and µk be as in (9) and (10), respectively. For every k ≥ 1:

(a) xk = argminλkγk(x
′) + ∥x′ − xk−1∥2/2;

(b) minλkγk(x
′) + ∥x′ − xk−1∥2/2 ≥ (1− σ2)∥yk − xk−1∥2/2;

(c) γk(x
∗) ≤ 0 for any x∗ ∈ (A+B)−1(0);

(d) for any x∗ ∈ (A+B)−1(0),

(1 + 2λkη)∥x∗ − xk∥2 + (1− σ2)∥yk − xk−1∥2 ≤ ∥x∗ − xk−1∥2; (11)

µk∥x∗ − xk∥2 + (1− σ2)
k∑

j=1

µj−1∥yj − xj−1∥2 ≤ ∥x∗ − x0∥2. (12)

Proof (a) This statement follows trivially from (8) and (9).
(b) Letting αk = 1/(1 + 2λkη) and using (8) we have that

xk = αk(xk−1 − λkvk) + (1− αk)yk,

which together with the definition of ∥ · ∥2 yields

∥xk − xk−1∥2 = αk∥λkvk∥2 + (1− αk)∥yk − xk−1∥2 − αk(1− αk)∥λkvk + yk − xk−1∥2 .

Direct use of (a), condition (9), the latter identity and the fact that λkαkη = (1− αk)/2 give

minλkγk(x
′) +

1

2
∥x′ − xk−1∥2 = λkγk(xk) +

1

2
∥xk − xk−1∥2

= −αk

2

(
∥λkvk∥2 + 2⟨λkvk, yk − xk−1⟩

)
+

1− αk

2
∥yk − xk−1∥2 − λkεk

=
1

2

(
∥yk − xk−1∥2 −

[
∥λkvk + yk − xk−1∥2

1 + 2λkη
+ 2λkϵk

])
,

which, combined with the inequality in (7) proves (b).
(c) Taking x∗ ∈ (A+B)−1(0) and using the inclusion in (7) we conclude that there exists ak, a

∗ ∈ X
satisfying

a∗ ∈ A(x∗), ak ∈ A(yk), vk − ak ∈ B[εk](yk), −a∗ ∈ B(x∗).

Using the latter inclusions, assumption A.1 and (3) we find

⟨a∗ − ak, x∗ − yk⟩ ≥ η∥x∗ − yk∥2, ⟨−(a∗ − ak)− vk, x∗ − yk⟩ ≥ −εk .

Adding the two above inequalities and using (9) we obtain the inequality in (c).
(d) Let x∗ ∈ (A + B)−1(0). We will first show that (11) holds. In view of (9) and (a) and (b) we

obtain, for all x′ ∈ X,

λkγk(x
′) +

1

2
∥x′ − xk−1∥2 =

(
minλkγk(x

′) +
1

2
∥x′ − xk−1∥2

)
+

1 + 2λkη

2
∥x′ − xk∥2

≥ 1

2

(
(1− σ2)∥yk − xk−1∥2 + (1 + 2λkη)∥x′ − xk∥2

)
.

To finish the proof of (11), use (c) and the latter inequality with x′ = x∗.
We will now use a induction argument to show that (12) follows from (11). Indeed, using (10) and (11)

for k = 1, we conclude that (12) holds for k = 1.
Assume that (12) holds for some k = m ≥ 1, that is,

µm∥x∗ − xm∥2 + (1− σ2)
m∑
j=1

µj−1∥yj − xj−1∥2 ≤ ∥x∗ − x0∥2.

Multiplying (11) evaluated at k = m+ 1 by µm and using (10) we get

µm+1∥x∗ − xm+1∥2 + (1− σ2)µm∥ym+1 − xm∥2 ≤ µm∥x∗ − xm∥2.

Adding the two displayed equations we conclude that (12) also holds k = m + 1, which completes the
induction proof. ⊓⊔
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Lemma 3.1 For k = 1, 2, . . .(
1− σk

√
1 + 2λkη

)
∥yk − xk−1∥ ≤ ∥λkvk∥ ≤

(
1 + σk

√
1 + 2λkη

)
∥yk − xk−1∥.

Proof Use the inequality in (7), triangle inequality and the fact that εk ≥ 0. ⊓⊔

In the next theorem, we establish rates of convergence for the sequences {xk}, {vk} and {εk} generated
by Algorithm 1.

Theorem 3.1 Let {µk} be as in (10). Let also d0 be the distance of x0 to the solution set of (4) and let
x∗ ∈ (A+B)−1(0).

Then, the following statements hold true:

(a) For every k ≥ 1, vk ∈ A(yk) +B[εk](yk) and

∥vk∥ ≤
d0

(
1 + σ

√
1 + 2λkη

)
λk

√
(1− σ2)µk−1

, εk ≤
σ2d20

2(1− σ2)λkµk−1
, (13)

∥x∗ − xk∥ ≤
1
√
µk
∥x∗ − x0∥; (14)

(b) for every k ≥ 1, there exists i ≤ k such that vi ∈ A(yi) +B[εi](yi) and

∥vi∥ ≤
d0√

(1− σ2)
∑k

j=1

λ2
jµj−1

(1+σ
√

1+2λjη)
2

, εi ≤
σ2d20λi

2(1− σ2)
∑k

j=1 λ
2
jµj−1

. (15)

Proof Note that the inclusions in (a) and (b) follow directly from (7). To prove (a), first note that in
view of (11) and (12), we obtain the following inequalities:

∥yk − xk−1∥ ≤
1√

1− σ2
∥x∗ − xk−1∥, ∥x∗ − xk−1∥ ≤

1
√
µk−1

∥x∗ − x0∥,

which in turn imply that

∥yk − xk−1∥ ≤
d0√

(1− σ2)µk−1

. (16)

From the inequality in (7) and the fact that σk ≤ σ we obtain

εk ≤
σ2

2λk
∥yk − xk−1∥2. (17)

Now, note that (13) follows from (16), (17) and the second inequality in Lemma 3.1. Moreover, (14) is
a direct consequence of (12).

(b) Note first that from (12) and Lemma 3.1 we find

k∑
j=1

λ2jµj−1(
1 + σ

√
1 + 2λjη

)2 ∥vj∥2 ≤ d20
1− σ2

,

and hence

∥vi∥2 := min
j=1,...,k

∥vj∥2 ≤
d20

(1− σ2)
∑k

j=1

λ2
jµj−1

(1+σ
√

1+2λjη)
2

,

which, in turn, gives the first bound in (15). Likewise, using (17) and (12) we obtain

k∑
j=1

2λ2jµj−1

σ2
(λ−1

j εj) =

k∑
j=1

2λjµj−1

σ2
εj ≤

d20
1− σ2

,

and, consequently, the second inequality in (15). ⊓⊔

We observed in the paragraph following the statement of Algorithm 1 that if η = 0, then Algorithm 1
reduces to the HPE method [3] applied to the problem (4), for which a complexity analysis was established
in [6]. Hence, it worths to note that in the case η = 0, Theorem 3.1(b) corresponds to Theorem 4.4(b)
of [6].

In the next corollary, we assume that the sequence {λk} is bounded away from zero.
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Corollary 3.1 In addition to the assumptions of Theorem 3.1, assume that λk ≥ λ > 0 for all k ≥ 1.
Then, the following statements hold for every k ≥ 1:

(a) vk ∈ A(yk) +B[εk](yk) and

∥vk∥ ≤ d0

√
1 + σ

1− σ

(
λ−2

(1 + 2λη)k−2

)
, εk ≤

σ2d20
2(1− σ2)λ(1 + 2λη)k−1

, (18)

∥x∗ − xk∥ ≤

√
1

(1 + 2λη)k
∥x∗ − x0∥; (19)

(b) if η > 0 in assumption A.1, then there exists i ≤ k such that vi ∈ A(yi) +B[εi](yi) and

∥vi∥ ≤ d0

√
1 + σ

1− σ

(
2ηλ−1(1 + 2λη)

(1 + 2λη)k − 1

)
, εi ≤

ησ2d20
(1− σ2) [(1 + 2λη)k − 1]

. (20)

Proof We start by noting that the inclusions in (a) and (b) follows from the corresponding ones in itens
(a) and (b) of Theorem 3.1. Moreover, using (10) and the assumption that λk ≥ λ for all k ≥ 1 we obtain

µk ≥ (1 + 2λη)k ∀k ≥ 0. (21)

(a) The scalar function ψ : t 7→ t−1
(
1 + σ

√
1 + 2tη

)
is nonincreasing in ]0,∞[ and hence ψ(λk) ≤ ψ(λ)

for all k ≥ 1, which in turn combined with (13), (14) and (21) gives (a).
(b) The first inequality in (20) follows from the first inequality in (15), the fact that the scalar function

1/ψ is nondecreasing in (0,∞), (21) and the assumptions that η > 0 and λk ≥ λ for all k ≥ 1.
To prove the second inequality in (20), note that from (7) and (12) we have

k∑
j=1

2λjµj−1εj ≤ σ2d20/(1− σ2),

and so that

εi := min
j=1,...,k

εj ≤
σ2d20

2(1− σ2)
∑k

j=1 λjµj−1

.

Hence, the desired result follows from the latter inequality, (21) and the assumption that η > 0. ⊓⊔

We note that in the “limit” case η → 0 in Corollary 3.1(b), the inequalities in (20) are identical to
the ones obtained in Theorem 4.4(a) of [6].

4 A Variant of the Tseng’s Forward-Backward Method for Strongly MIPs

In this section, we are concerned with the MIP

0 ∈ F (x) +B(x), (22)

where the following assumptions are assumed to hold:

B.1) F : X → X is a (single-valued) strongly monotone and L-Lipschitz continuous operator, i.e., there
exist η ≥ 0 and L > 0 such that

⟨F (x)− F (x′), x− x′⟩ ≥ η∥x− x′∥2, ∥F (x)− F (x′)∥ ≤ L∥x− x′∥ ∀x, x′ ∈ X; (23)

B.2) B : X ⇒ X is maximal monotone;
B.3) the solution set of (22), (F +B)−1(0), is nonempty.

We observe that from the above assumptions, we have that problem (22) is a special case of (4) and,
as a consequence of this observation, Algorithm 1 as well as its convergence and iteration-complexity
analysis can be applied to (22). Moreover, we note that by combining (23) with the Cauchy-Scharwz
inequality we obtain L ≥ η.

The following algorithm is a variant of the Tseng’s forward-backward method, which takes into
consideration the fact that the operator F in (22) is strongly monotone. It worths to mention that in
the case η = 0, Algorithm 2 reduces to the version of the Tseng’s method presented in [6].
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Algorithm 2: A variant of the Tseng’s forward-backward method for strongly MIPs

(0) Let x0 ∈ X and σ ∈]0, 1[ be given and set λ = σ
L2

(
ση +

√
σ2η2 + L2

)
; set k = 1;

(1) compute

yk = (I + λB)−1(xk−1 − λF (xk−1)), xk = yk −
λ

1 + 2λη
(F (yk)− F (xk−1)) ; (24)

(2) set k = k + 1 and go to step 1.

end

Now we have some comments about Algorithm 2. First, Nesterov and Scrimali proposed in [16] an
algorithm for solving variational inequalities with strongly monotone operators. Their method, in contrast
to Algorithm 2, is designed for solving (22) in the case that the operator B is the normal cone of a closed
convex set. Moreover, while Algorithm 2 requires the computation of one resolvent per iteration, their
method requires the computation of two projections/resolvents. We will show in Proposition 4.2 that
Algorithm 2 preserves the same iteration-complexity of Nesterov-Scrimali’s method. Second, using the
definition of λ in Algorithm 2, we find

λ2L2

1 + 2λη
= σ2. (25)

Therefore, defining

ω :=
ση +

√
σ2η2 + L2

L
, (26)

it follows that

1 +
ση

L
≤ ω ≤ 1 +

2ση

L
. (27)

Moreover, by (25) and the definition of λ (in Algorithm 2) we have

1 + 2λη = ω2 and λ =
σω

L
. (28)

By the second identity in (28), we have that if η > 0, then the stepsize λ = σ/L that appears in the
version of the Tseng’s forward-backward method of [6] is increased in Algorithm 2 by a factor of ω.

In next lemma, we will prove that Algorithm 2 is a special case of Algorithm 1.

Lemma 4.1 Let {xk} and {yk} be sequences generated by Algorithm 2 and define

vk =
1

λ

[
xk−1 − yk + λ (F (yk)− F (xk−1))

]
. (29)

Then, the following statements hold for every k ≥ 1:

vk ∈ F (yk) +B(yk),
∥λvk + yk − xk−1∥2

1 + 2λη
≤ σ2∥yk − xk−1∥2 (30)

and

xk =
(xk−1 − λvk) + 2ληyk

1 + 2λη
. (31)

As a consequence, it follows that Algorithm 2 is a special case of Algorithm 1 with εk = 0 for all k ≥ 1.

Proof Using the definition of yk and vk in (24) and (29), respectively, we have

qk :=
1

λ
[xk−1 − λF (xk−1)− yk] ∈ B(yk), vk = F (yk) + qk ∈ F (yk) +B(yk),

which proves the inclusion in (30). From (29) we obtain λvk + yk − xk−1 = λ(F (yk)− F (xk−1)), which
in turn combined with the second inequality in (23) and (25) yields

∥λvk + yk − xk−1∥2

1 + 2λη
=
∥λ(F (yk)− F (xk−1))∥2

1 + 2λη
≤ λ2L2

1 + 2λη
∥yk − xk−1∥2 = σ2∥yk − xk−1∥2.

Finally, (31) follows trivially from the definitions of xk and vk in (24) and (29), respectively. ⊓⊔
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In next proposition, we obtain rates of convergence for the sequence {vk} and {xk} generated by
Algorithm 2.

Proposition 4.1 Let {xk} and {yk} be generated by Algorithm 2 and let {vk} be as in (29). Consider
also ω as in (26), d0 be the distance of x0 to the solution set of (22) and let x∗ ∈ (F +B)−1(0). Then,
the following statements hold for every k ≥ 1:

(a) vk ∈ F (yk) +B(yk) and

∥vk∥ ≤
d0L

σ

√
1 + σ

1− σ
1

ωk−1
≤ d0L

σ

√
1 + σ

1− σ
1(

1 + ση
L

)k−1
, (32)

∥x∗ − xk∥ ≤
1

ωk
∥x∗ − x0∥ ≤

1(
1 + ση

L

)k ∥x∗ − x0∥; (33)

(b) if η > 0 in (23), then there exists i ≤ k such that vi ∈ F (yi) +B(yi) and

∥vi∥ ≤
d0L

σ

√
1 + σ

1− σ

√
ω2 − 1

ω2k − 1
≤ d0L

σ

√√√√(
1 + σ

1− σ

) (
1 + 2ση

L

)2 − 1(
1 + ση

L

)2k − 1
.

Proof Using Lemma 4.1, Corollary 3.1(a) (resp. Corollary 3.1(b)) (with λ = λ), (28) and the first
inequality in (27) we obtain (a) (resp. (b)). ⊓⊔

Next proposition is a direct consequence of Proposition 4.1. It gives iteration-complexity bounds for
obtaining a pair (y, v) in the graph of F + B satisfying (5) with ε = 0. Moreover, it provides iteration-
complexity bounds for the approximation {xk} with respect to any solution of (22).

Proposition 4.2 Let {xk} and {yk} be generated Algorithm 2, d0 be the distance of x0 to the solution
set of (22), x∗ ∈ (F + B)−1(0) and assume that η > 0 in (23). Then, for every ρ > 0 the following
statements hold:

(a) There exists an index

k0 = O

(
L

ση
log

(
d0L

ρ

))
such that vk ∈ F (yk) +B(yk) and ∥vk∥ ≤ ρ for all k ≥ k0;

(b) there exists an index

k1 = O

(
L

ση
log

(
∥x∗ − x0∥

ρ

))
such that ∥x∗ − xk∥ ≤ ρ for all k ≥ k1.

5 A Variant of the Korpelevich Extragradient Method for Strongly Monotone VIPs

In this section, we consider the problem (22) for the special case where the operator B is the normal
cone of a closed convex set C ⊂ X, i.e,

0 ∈ F (x) +NC(x). (34)

This problem is trivially equivalent to the strongly monotone variational inequality problem

x ∈ C, ⟨x′ − x, F (x)⟩ ≥ 0 ∀x′ ∈ C.

We also assume that the conditions B.1 and B.3 of the Section 4 hold true. In what follows, we present
and analyze a variant of the Korpelevich extragradient method for computing approximate solutions of
the variational inequality problem (VIP) (34). We will obtain iteration-complexity bounds by showing
that the algorithm proposed in this section is a special case of the Algorithm 1 of Section 3.
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Algorithm 3: A variant of the Korpelevich extragradient method for strongly monotone VIPs

(0) Let x0 ∈ X and σ ∈]0, 1[ be given and set λ = σ
L2

(
ση +

√
σ2η2 + L2

)
; set k = 1;

(1) compute

yk = PC(xk−1 − λF (xk−1)), xk = PC

(
xk−1 − λF (yk) + 2ληyk

1 + 2λη

)
; (35)

(2) set k = k + 1 and go to step 1.

end

We now make some remarks about Algorithm 3. First, it uses the same stepsize of Algorithm 2, but
in contrast to the latter, requires two projections per iteration. Second, in the case η = 0, Algorithm
3 reduces to the Korpelevich extragradient method, for which iteration-complexity was first presented
in [6].

In next lemma, we show that Algorithm 3 is a special case of Algorithm 1. This fact will allow us
to obtain iteration-complexity bounds for Algorithm 3 as a direct consequence of the ones obtained for
Algorithm 1 in Section 3.

Lemma 5.1 Let {xk} and {yk} be sequences generated by Algorithm 3 and define

qk =
xk−1 − λF (yk) + 2ληyk − (1 + 2λη)xk

λ
, (36)

vk = F (yk) + qk , (37)

εk = ⟨qk, xk − yk⟩ . (38)

Then, εk ≥ 0,

vk ∈ F (yk) +N εk
C (yk),

∥λvk + yk − xk−1∥2

1 + 2λη
+ 2λεk ≤ σ2∥yk − xk−1∥2 (39)

and

xk =
(xk−1 − λvk) + 2ληyk

1 + 2λη
. (40)

As a consequence, it follows that Algorithm 3 is a special case of Algorithm 1.

Proof Using the second identity in (35) and the fact that PC = (I +NC)
−1 we obtain

q̃k := [xk−1 − λF (yk) + 2ληyk] /(1 + 2λη)− xk ∈ NC(xk), (41)

which in turn combined with (36) (and the fact that NC(xk) is a cone) yields

qk =
1 + 2λη

λ
q̃k ∈ NC(xk). (42)

It follows from (42), (2) with f = δC and (38) that εk ≥ 0 and qk ∈ ∂εkδC(yk) ⊂ N
εk
C (yk).

Using the latter inclusion and (37) we obtain the inclusion in (39). To prove the inequality in (39),
note first that from the definition of yk in (35) we have

pk :=
1

λ
(xk−1 − λF (xk−1)− yk) ∈ NC(yk) (43)

and thus ⟨pk, xk − yk⟩ ≤ 0, because xk ∈ C. By combining the latter inequality with (38) we find

εk = ⟨qk − pk, xk − yk⟩+ ⟨pk, xk − yk⟩ ≤ ⟨qk − pk, xk − yk⟩ . (44)
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From (37), (42) and (41) we obtain the following identity λvk + yk − xk−1 = (1 + 2λη)(yk − xk), which
in turn combined with (44), (42), (43), the second inequality in (23) and the defintion of λ in Algorithm
3 yields

∥λvk + yk − xk−1∥2

1 + 2λη
+ 2λεk ≤

∥(1 + 2λη)(xk − yk)∥2 + 2⟨λ(qk − pk), (1 + 2λη)xk − yk⟩
1 + 2λη

≤ ∥(1 + 2λη)(xk − yk) + λ(qk − pk)∥2 − ∥λ(qk − pk)∥2

1 + 2λη

≤ ∥(1 + 2λη)(xk − yk) + λ(qk − pk)∥2

1 + 2λη

=
∥λ(F (yk)− F (xk−1))∥2

1 + 2λη

≤ λ2L2

1 + 2λη
∥yk − xk−1∥2

= σ2∥yk − xk−1∥2,

where in the last inequality we also used the identity (25) (note that Algorithms 2 and 3 have the same
stepsize λ). To finish the proof of the lemma, note that the identity in (40) follows directly from (37)
and (36). ⊓⊔

The following two propositions are the analogues of Propositions 4.1 and 4.2 for the Algorithm 3.

Proposition 5.1 Let {xk} and {yk} be generated by Algorithm 3 and let {vk} and {εk} be as in (37)
and (38), respectively. Consider also ω as in (26), let d0 be the distance of x0 to the solution set of (34)
and let x∗ be any solution of (34). Then, the following statements hold for every k ≥ 1:

(a) vk ∈ F (yk) +B[εk](yk) and

∥vk∥ ≤
d0L

σ

√
1 + σ

1− σ
1

ωk−1
≤ d0L

σ

√
1 + σ

1− σ
1(

1 + ση
L

)k−1
, (45)

εk ≤
d20σL

2(1− σ2)ω2k−1
≤ d20σL

2(1− σ2)
(
1 + ση

L

)2k−1
, (46)

∥x∗ − xk∥ ≤
1

ωk
∥x∗ − x0∥ ≤

1(
1 + ση

L

)k ∥x∗ − x0∥; (47)

(b) if η > 0 in (23), then there exists i ≤ k such that vi ∈ F (yi) +B[εi](yi) and

∥vi∥ ≤
d0L

σ

√
1 + σ

1− σ

√
ω2 − 1

ω2k − 1
≤ d0L

σ

√√√√(
1 + σ

1− σ

) (
1 + 2ση

L

)2 − 1(
1 + ση

L

)2k − 1
,

εi ≤
d20σL(ω

2 − 1)

2(1− σ2)ω(ω2k − 1)
≤

d20σL(
(
1 + ση

L

)2 − 1)

2(1− σ2)
(
1 + ση

L

) ((
1 + ση

L

)2k − 1
) .

Proof Using Lemma 5.1, Corollary 3.1(a) (resp. Corollary 3.1(b)) (with λ = λ), (28) and the first
inequality in (27) (note that Algorithms 2 and 3 have the same stepsize λ) we obtain (a) (resp. (b)). ⊓⊔

Proposition 5.2 Let {xk} and {yk} be generated by Algorithm 3 and assume that η > 0 in (23). Let
also d0 denote the distance of x0 to the solution set of (34) and x∗ be any solution of (34). Then, the
following statements hold for every ρ > 0 and ε > 0 :

(a) There exists an index

k0 = O

(
L

ση
max

{
log

(
d0L

ρ

)
, log

(
d20L

ε

)})
such that vk ∈ F (yk) +B[εk](yk), ∥vk∥ ≤ ρ and εk ≤ ε for all k ≥ k0;

(b) there exists an index

k1 = O

(
L

ση
log

(
∥x∗ − x0∥

ρ

))
such that ∥x∗ − xk∥ ≤ ρ for all k ≥ k1.
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6 Conclusions

In this paper, we addressed the problem of solving monotone inclusions for operators that can be de-
composed into two components, one which is strongly monotone and another one which is (maximal)
monotone. We proposed a variant of the HPE method for these probelms and derived its iteration-
complexity, which is stronger than the one of the HPE for general MIPs. The method we proposed is
rather a general framework than an algorithm, because it did not specified how to compute an iteration.
To ilustrate this fact, as applications, we have proposed variants of the Tseng’s forward-backward and
Korpelevich extragradient methods under the assumption of strong monotonicity. Moreover, we have
proved that both methods have the same rate of convergence of a method previously proposed by Nes-
terov and Scrimali, and that the variant of the Tseng’s method has the advantage of computing just one
resolvent/projection per iteration. More precisely, we have shown that linear (global) rates of convergence
can be reached for the method proposed in this paper as well as for its two variants, which improves
previous sublinear rates obtained for the HPE method.
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