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Abstract We propose and study the iteration-complexity of a proximal-Newton method
for finding approximate solutions of the problem of minimizing a twice continuously differ-
entiable convex function on a (possibly infinite dimensional) Hilbert space. We prove global
convergence rates for obtaining approximate solutions in terms of function/gradient values.
Our main results follow from an iteration-complexity study of an (large-step) inexact prox-
imal point method for solving convex minimization problems.
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1 Introduction

In this paper we consider optimization problems of minimizing twice continuously differen-
tiable convex functions on (possibly infinite dimensional) real Hilbert spaces. These problems
appear in different fields of applied sciences and have been subject of intense research in the
communities of numerical analysis and optimization. One of the most important numerical
methods for finding approximate solutions of unconstrained optimization problems is the
Newton method. In its simplest form, it depends, in each step, on the solution of a quadratic
local model of the objective function which, on the other hand, leads to the solution of linear
systems of equations defined by the Hessian of the objective function [2]. Since the Hessian
can be degenerate at the current step, many different modifications of the Newton method
have been proposed in the literature to ensure well-definedness and convergence (see, e.g.,
[8] for a discussion). In this work, we focus on the global performance of proximal-Newton
methods, which are Newton-type methods where a proximal quadratic regularization term
is added to the quadratic local model which has to be minimized in each iteration. Like in
the Newton method, it leads, in each step, to the solution of linear systems, but now with an
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additional regularization parameter which, in particular, guarantees the well-definedness of
the method. Since proximal-Newton methods have a proximal nature, they can be analyzed
in the setting of proximal point methods for optimization, which we briefly discuss in what
follows.

The proximal point method is a classical scheme for solving monotone inclusion problems
with point-to-set monotone operators, proposed by Martinet [3] and further developed by
Rockafellar [9], which uses the current iteration to construct a regularized version of the
original problem (the proximal subproblem) whose the solution is taken as the next iteration.
In contrast to the Rockafellar’s approach which relies on a summable error condition for
solving each subproblem, the hybrid proximal extragradient (HPE) method of Solodov and
Svaiter [11] requires for its convergence each proximal subproblem to be solved within a
relative error condition.

In this paper we combine ideas from the HPE-theory and classical Newton method to
propose a proximal-Newton method with global performance for solving smooth convex
optimization problems. With this in mind, we first propose and study an inexact under-
relaxed proximal point method (Algorithm 1) for (nonsmooth) convex optimization, which
shares similar proprieties with the method recently proposed in [1], and after that we show
how to obtain a proximal-Newton method as a special case. We obtain bounds on the
iteration-complexity to find approximate solutions in terms of function/gradient values.

Contents. Section 2 presents an inexact under-relaxed proximal point method for convex
optimization and its iteration-complexity analysis. Section 3 presents a proximal-Newton
method for smooth convex optimization and discusses its main proprieties. Section 4 con-
tains the main contributions of the paper, namely, the iteration-complexity of the method
proposed in Section 3. Finally, the appendix contains the proofs of some results in Section
2 and an auxiliary lemma.

Notation. We denote by H a real Hilbert space with inner product 〈·, ·〉 and induced norm
‖ ·‖ =

√
〈·, ·〉. The extended real line is denoted by R := R∪{−∞,+∞} and we also use the

notation log+(t) = max{log(t), 0}. Moreover, we use the standard notation and definitions
of convex analysis for convex functions, subdifferentials, ε-subdifferentials, etc.

2 An inexact proximal point method for convex optimization

In this section we consider the minimization problem

minimize f(x)

subject to x ∈ H,
(1)

where f : H → R is a proper closed convex function. We also assume that the solution set
of (1) is nonempty. One of the most important numerical schemes for finding approximate
solutions of (1) is the proximal point method (PPM) [3,10]. For a given starting point x0 ∈ H,
the PPM defines a sequence {xk}k≥1 of approximations to the solution of (1) according to

xk ≈ argmin
x∈H

f(x) +
1

2λk
‖x− xk−1‖2, (2)

where λk > 0 is a sequence of stepsizes and xk−1 is the current iterate. Equivalently, the
sequence {xk}k≥1 can be defined as an (approximate) solution of the monotone inclusion

0 ∈ λk∂f(x) + x− xk−1. (3)

Whenever (2) is solved exactly then weak convergence of {xk}k≥1 to a solution of (1) is
guaranteed under the assumption that λk > 0 is bounded away from zero [10]. Still under
the latter condition on the sequence of stepsizes, weak convergence of the inexact PPM can
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also be obtained under summable error criterion [10]: if, for all k ≥ 1, x∗k ∈ H is the exact
solution of (2) (or (3)) then {xk}k≥1 must satisfy

∞∑
k=1

‖xk − x∗k‖ <∞. (4)

Starting with [11,12], the last two decades have seen an intense research activity in the study
and development of proximal point methods (for the more general problem of inclusions with
monotone operators) which use relative error tolerance for finding approximate solutions of
(3). Among these new methods, the hybrid proximal extragradient (HPE) method [11] has
been shown to serve as a framework for the design and analysis of several first- and second-
order methods in optimization, variational inequalities, saddle-point problems, etc. (see, e.g.,
[4–7].) A variant of the HPE method suitable for the analysis of second-order methods, called
large-step HPE method, was proposed and studied in [7]. As one of its distinctive features,
the latter method forces at each iteration a large-step condition, which plays a crucial role
in obtaining superior rates of convergence (see, e.g., [6,7]).

An iteration of the large-step HPE method for solving, in particular, the monotone
inclusion problem 0 ∈ ∂f(x) – which is clearly equivalent to (1) – consists of

vk ∈ (∂f)εk(yk), ‖λkvk + yk − xk−1‖2 + 2λkεk ≤ σ2‖yk − xk−1‖2,
λk‖yk − xk−1‖ ≥ η > 0,

xk = xk−1 − λkvk.
(5)

Here σ ∈ [0, 1[ is a relative error tolerance and (∂f)εk denotes the εk-enlargement of ∂f (it
has the property that ∂εkf(y) ⊂ (∂f)εk(y) for all y ∈ H). Moreover, the second inequality
in (5) is the large-step condition that we mentioned before. It should be emphasized that
(a) if σ = 0, then the scheme in (5) reduces to the exact PPM, i.e., in this case yk is
the exact solution of (3), (b) the new iterate in (5) is defined as an extragradient step
departing from xk−1, (c) the large-step HPE method (5) has the same asymptotic behavior
of the exact and inexact (under the condition (4)) PPM, namely, it converges weakly to
a solution of (1), whenever there exists at least one [11]. Moreover, it has global rates
of convergence [7]: (i) pointwise of order (‖vk‖, εk) = (O(1/k),O(1/k3/2) and (ii) ergodic
of order max{‖v̄k‖, ε̄k} = O(1/k3/2), where v̄k and ε̄k are constructed from all previous
generated vk and εk satisfying (5), (d) the analysis of [7] does not include rates of convergence
for the scheme (5) in terms of function values of f , since [7] considers the more general
problem of inclusion problems for maximal monotone operators.

In this section we will study global rates of convergence (iteration-complexity) in terms
of both objective function values and (‖vk‖, εk) for the following variant of the large-step
HPE method (5).
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Algorithm 1 An inexact under-relaxed proximal point method for convex op-
timization

0) Let x0 ∈ dom(f), 0 ≤ σ < 1, η > 0, 0 < τ ≤ 1, λ1 > 0 and set k = 1;
1) compute (yk, vk, εk) ∈ H ×H× R+ satisfying

vk ∈ ∂εkf(yk),

‖λkvk + yk − xk−1‖2 + 2λkεk ≤ σ2‖yk − xk−1‖2,
λk‖yk − xk−1‖ ≥ η or vk = 0 ;

(6)

2) if vk = 0, then stop and output yk;
3) otherwise, choose λk+1 > 0, τk ∈ [τ, 1], and set

xk = (1− τk)xk−1 + τkyk; (7)

4) let k ← k + 1 and go to step 1.

Remarks. 1) Algorithm 1 is an under-relaxed large-step proximal point method with relative
error tolerance σ > 0; 2) the main difference between (5) and (6)–(7) is the inclusion, the
one in (6) is stronger than the one in (5), and in the definition of the new iterate xk.
Rather than an extragradient step from xk−1, Algorithm 1 defines the new iterate xk in
(7) as a convex combination between xk−1 and yk; 3) in what follows, we will show how
these distinctive features of Algorithm 1 pointed out in the previous remark allows one to
prove superior convergence rates (when compared to the large-step HPE method) as well
as convergence rates in terms of function values; 4) if we set τ = 1 in Algorithm 1, then
it reduces to Algorithm 1 in [1], for which iteration-complexity analysis was studied in the
latter reference; 5) Since x0 ∈ dom(f), an induction argument together with the inclusion
in (6) shows that the same holds for every xk and yk generated by Algorithm 1.

From now one in this section we assume (w.l.o.g.) that Algorithm 1 generates infinite
sequences {λk}, {yk}, {vk}, etc.

The following lemma is a direct consequence of the first inequality in (6) and the triangle
inequality.

Lemma 2.1 For every k ≥ 1,

(1 + σ)‖yk − xk−1‖ ≥ ‖λkvk‖ ≥ (1− σ)‖yk − xk−1‖.

We mention that if vk = 0 in step 2, then, in particular, it follows from Lemma 2.1 and (6)
that 0 ∈ ∂f(yk), i.e., yk is a solution of (1).

Since the proofs of the next results follow the same outline of the ones in [1], we have
included it in Appendix A.2.

Next proposition shows how does the function values decrease in Algorithm 1.

Proposition 2.1 For every k ≥ 1,

f(xk−1)−max {f(xk), f(yk)} ≥ τ max

{√
η(1− σ)‖vk‖3/2,

(1− σ2)

2λk
‖yk − xk−1‖2

}
,

‖yk − xk−1‖2 ≥
2λkεk
σ2

.

(8)

Remark. From the first inequality in (8) and the assumption that x0 ∈ dom(f) we have

∞ > f(x0) ≥ f(xk) +
τ(1− σ2)

2

k∑
j=1

‖yj − xj−1‖2

λj
∀k ≥ 1. (9)
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As a consequence of the above inequality, we conclude that the sequence {λ−1k ‖yk − xk−1‖2}
converges to zero as k →∞, which combined with the large-step condition, i.e., the second
inequality in (6), proves that λk →∞ as k →∞.

Let D0 denote the diameter of the level set [f ≤ f(x0)], that is,

D0 = sup{‖x− y‖ : max{f(x), f(y)} ≤ f(x0)}. (10)

Lemma 2.2 Assume that 0 < D0 <∞, let x be a solution of (1) and define

D :=
τ
√
η(1− σ)

D3/2
0 (1 + σ2/[2(1− σ)])

3/2
. (11)

Then, for all k ≥ 1:

f(xk−1) + (1− τ)D [f(xk−1)− f(x)]
3/2 ≥ f(xk) +D [f(xk)− f(x)]

3/2
. (12)

From now on in this section we will assume that x0 is not a solution of (1).
The next proposition shows the first global rate of convergence for Algorithm 1 (in terms

of objective function values and (‖vk‖, εk)).

Theorem 2.1 Assume that 0 < D0 < ∞, let D > 0 be defined in (11), let x ∈ H be a
solution of (1) and define

D̂ :=
τD

2 + 3D
√
f(x0)− f(x)

. (13)

Then, for every k ≥ 1:

f(xk)− f(x) ≤ f(x0)− f(x)[
1 + k D̂

√
f(x0)− f(x)

]2 = O
(

1

k2

)
. (14)

Moreover, for each k ≥ 2 even, there exists j ∈ {k/2 + 1, . . . , k} such that

‖vj‖ ≤
4

3
√
η(1− σ)

 f(x0)− f(x)

τk
[
2 + k D̂

√
f(x0)− f(x)

]2


2/3

= O
(

1

k2

)
, (15)

εj ≤
4σ2 [f(x0)− f(x)]

τ(1− σ2)k
[
2 + kD̂

√
f(x0)− f(x)

]2 = O
(

1

k3

)
. (16)

Next we present a similar result to Theorem 2.1 under the assumption that εk = 0 for
all k ≥ 1 in Algorithm 1. To this end, first define (cf. (11) and (13))

E :=
τ
√
η(1− σ)

D3/2
0

, Ê :=
τE

2 + 3E
√
f(x0)− f(x)

, (17)

where we have assumed that x0 is not a solution of (1).

Theorem 2.2 Assume that 0 < D0 <∞ and that εk = 0 for all k ≥ 1 in Algorithm 1. Let
E and Ê be defined in (17) and let x be a solution of (1). Then, for every k ≥ 1:

f(xk)− f(x) ≤ f(x0)− f(x)[
1 + k Ê

√
f(x0)− f(x)

]2 = O
(

1

k2

)
. (18)

Moreover, for each k ≥ 2 even, there exists j ∈ {k/2 + 1, . . . , k} such that

‖vj‖ ≤
4

3
√
η(1− σ)

 f(x0)− f(x)

τk
[
2 + k Ê

√
f(x0)− f(x)

]2


2/3

= O
(

1

k2

)
. (19)
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3 A proximal-Newton method for unconstrained convex optimization

In this section we consider the minimization problem

minimize f(x)

subject to x ∈ H,
(20)

where f : H → R is assumed to have Lipschitz continuous second derivatives, i.e., it is twice
differentiable and there exists L > 0 such that

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖ ∀ x, y ∈ H. (21)

As in the previous section, we also assume that the solution set of (20) is nonempty. Clearly,
problem (20) is a special case of (1) and, hence, Algorithm 1 can be applied to find ap-
proximate solutions of (20). As long as condition (21) holds, it is a matter of fact to prove
that

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖ ≤ L

2
‖y − x‖2 ∀ x, y ∈ H. (22)

For a given pair (x, λ) ∈ H×R++, an (exact) proximal step from x with parameter λ consists
in finding the unique solution z+ of

0 = λ∇f(z) + z − x, (23)

because the latter equation with z = z+ is clearly equivalent to z+ = (λ∇f + I)−1x. Since
in this section we are interested in studding proximal-Newton methods for solving (20), in
what follows we will show how to perform Newton steps to find approximate solutions of
(23). To this end, first consider the following “system of neighborhoods”, which we will show
is “good” to perform Newton steps.

Given 0 < θ < 1, define, for each x ∈ H and λ > 0,

Nθ(x, λ) :=

{
y ∈ H :

λL

2
‖λ∇f(y) + y − x‖ ≤ θ

}
. (24)

Lemma 3.1 For x, y ∈ H and λ > 0 define

s := −
(
λ∇2f(y) + I

)−1
(λ∇f(y) + y − x) , y+ := y + s.

Then, the following hold:

(a) ‖s‖ ≤ ‖λ∇f(y) + y − x‖;

(b)
λL

2
‖λ∇f(y+) + y+ − x‖ ≤

(
λL

2
‖λ∇f(y) + y − x‖

)2

;

(c) if y ∈ Nθ(x, λ), then y+ ∈ Nθ2(x, λ).

Proof (a) Note first that since f is convex, then ∇2f(y) ≥ 0. Using the latter inequality and
the definition of s we obtain

‖s‖2 ≤ 〈
(
λ∇2f(y) + I

)
s, s〉 = −〈(λ∇f(y) + y − x) , s〉 ≤ ‖λ∇f(y) + y − x‖‖s‖, (25)

which gives the desired result.
(b) Using the definitions of s and y+, and (22) we find that

‖λ∇f(y+) + y+ − x‖ = ‖(λ∇f(y+) + y+ − x)−
[
(λ∇f(y) + y − x) + (λ∇2f(y) + I)s

]
‖

= λ‖∇f(y+)−∇f(y)−∇2f(y)(y+ − y)‖

≤ λL

2
‖y+ − y‖2 =

λL

2
‖s‖2.

The desired result follows by multiplying both sides of the last displayed inequality by the
term λL/2 and using Item (a).

(c) This result is a direct consequence of Item (b) and (24). ut
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Lemma 3.2 For λ, η > 0 and 0 < θ < 1, define

τ :=
2(1− θ)

2 +
Lη

2θ
+

√(
2 +

Lη

2θ

)2

− 4(1− θ)

, λ+ := (1− τ)−1λ. (26)

Then,

1− θ
2 + Lη/(2θ)

< τ < 1. (27)

Moreover, if z ∈ Nθ2(x, λ) and λ‖z − x‖ ≤ η, then

z ∈ Nθ(x, λ+). (28)

Proof Define

q : [0, 1]→ R, q(t) := (1− t)2θ −
(
θ2 +

tLη

2

)
(29)

and note that q(0) = θ(1− θ) > 0 and q(1) = −(θ2 +Lη/2) < 0. Hence, using the definition
of τ in (26), and (29) we conclude that τ is the smallest root of q(t) and that τ ∈]0, 1[, i.e.,

q(τ) = 0, 0 < τ < 1. (30)

Moreover,

1− θ
2 + Lη/(2θ)

= − q(0)

q′(0)
< τ < 1, (31)

which gives (27).
Assume now that z ∈ Nθ2(x, λ) and λ‖z − x‖ ≤ η. Since λ+ > λ, it follows from the

triangle inequality that

‖λ+∇f(z) + z − x‖ = ‖(λ+/λ) (λ∇f(z) + z − x) + (1− (λ+/λ)) (z − x)‖
≤ (λ+/λ)‖λ∇f(z) + z − x‖+ ((λ+/λ)− 1) ‖z − x‖.

Multiplication of both sides of the latter inequality by λ+L/2, the assumptions on z, the
fact that λ+/λ = (1− τ)−1 and the identity in (30) yield

λ+L

2
‖λ+∇f(z) + z − x‖ ≤

(
λ+
λ

)2
λL

2
‖λ∇f(z) + z − x‖+

λ+
λ

(
λ+
λ
− 1

)
L

2
(λ‖z − x‖)

≤
(
λ+
λ

)2

θ2 +
λ+
λ

(
λ+
λ
− 1

)
Lη

2

=
θ2

(1− τ)2
+

τ

(1− τ)2
Lη

2
= θ,

which, combined with (24), gives (28). ut

Corollary 3.1 Let y+ = y + s be defined in Lemma 3.1 and λ+ in (26). If y ∈ Nθ(x, λ)
and λ‖y+ − x‖ ≤ η, then

y+ ∈ Nθ(x, λ+). (32)

Proof The result follows from Lemma 3.1(c) and the second statement in Lemma 3.2. ut
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Lemma 3.3 Let z ∈ Nθ2(x, λ), τ as in (26), 0 < σ < 1 and define

w := (1− τ)x+ τz, λ+ := (1− τ)λ. (33)

If λ‖z − x‖ ≥ η :=
2θ2

σL
, then

(a) ‖λ∇f(z) + z − x‖ ≤ σ‖z − x‖;
(b) z ∈ Nθ(w, λ+).

Proof (a) Using the assumptions that z ∈ Nθ2(x, λ), λ‖z − x‖ ≥ η, the definition of η and
(24) we obtain

‖λ∇f(z) + z − x‖ ≤ 2θ2

λL
=
ση

λ
≤ σ‖z − x‖.

(b) Note that

‖λ+∇f(z) + z − w‖ = (1− τ)‖λ∇f(z) + z − x‖ ≤ (1− τ)
2θ2

λL
= (1− τ)2

2θ2

λ+L
≤ 2θ2

λ+L

and so, using (24), we conclude that z ∈ Nθ(w, λ+). ut

Corollary 3.2 Let y+ = y + s be defined in Lemma 3.1, τ and λ+ in (26) and (33),
respectively, and

x+ = (1− τ)x+ τy+.

If y ∈ Nθ(x, λ) and λ‖y+ − x‖ ≥ η :=
2θ2

σL
, then

(a) ‖λ∇f(y+) + y+ − x‖ ≤ σ‖y+ − x‖;
(b) y+ ∈ Nθ(x+, λ+).

Proof The result is a direct consequence of Lemma 3.1(c) and Lemma 3.3. ut

Next is the main algorithm of this paper.

Algorithm 2 A proximal-Newton method for convex optimization

0) Let y0 = x0 ∈ H such that ∇f(y0) 6= 0, let 0 < σ, θ < 1 and set

η :=
2θ2

σL
, τ :=

2(1− θ)
(2 + θ/σ) +

√
(2 + θ/σ)2 − 4(1− θ)

, λ1 :=

√
2θ

L‖∇f(y0)‖
. (34)

Set i = 1;
1) compute s = si solving(

λi∇2f(yi−1) + I
)
s = − (λi∇f(yi−1) + yi−1 − xi−1) (35)

and set yi = yi−1 + si;
2) if ∇f(yi) = 0, then stop and output yi;
3) otherwise, (3.a) if

λi‖yi − xi−1‖ ≥ η (36)

then set

xi := (1− τ)xi−1 + τyi, λi+1 := (1− τ)λi; (37)

(3.b) else

xi = xi−1, λi+1 := (1− τ)−1λi; (38)

4) let i← i+ 1 and go to step 1.
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Remarks. 1) Using the definition of η and τ in (34) we can easily check that the latter
parameter coincides with the one defined in (26) and so belongs to ]0, 1[; 2) In Section 7 of
[1], for a given tolerance ρ > 0, a proximal-Newton method for solving (20) with iteration-
complexity O(1/

√
ρ) was proposed and analyzed. In each step i ≥ 1, the latter algorithm

computes λi > 0 and si := (λi∇2f(xi−1) + I)−1λi∇f(xi−1) such that

2σ`
L
≤ λi‖si‖ ≤

2σu
L
,

where 0 < σ` < σu < 1. As was mentioned in [1], the procedure to find a pair (λi, si) as
above depends on a binary search proposed in [7], and an improvement of this procedure
would be a topic of future research. In this sense, note that Algorithm 2 does not depend
on any procedure similar to the one discussed above, instead of that, in each iteration, it
performs a fine tuning of the step-size λi > 0 (see (37) and (38) and Proposition 4.1).

4 Complexity analysis

In this section we will study the iteration-complexity of Algorithm 2 to find approximate
solutions of (20). More precisely, for a given tolerance ρ > 0, we will estimate the number
of iterations to find x ∈ H satisfying

f(x)− f(x̄) ≤ ρ or ‖∇f(x)‖ ≤ ρ, (39)

where x̄ is a solution of (20). The main idea is to show that (for a suitable selection of
indexes) Algorithm 2 is a special instance of Algorithm 1 and so the iteration-complexity
will follow from Theorem 2.2. This is done in Proposition 4.2 and Theorems 4.2 and 4.3,
where we show that the number of iterations to find x ∈ H satisfying (39) is bounded by
O
(
1/
√
ρ+ log(1/ρ)

)
.

From now one, w.l.o.g., we will assume that Algorithm 2 generates infinite sequences.

Proposition 4.1 Let {xi}, {yi} and {λi} be generated by Algorithm 2. The following hold
for every i ≥ 1:

(a) yi−1 ∈ Nθ(xi−1, λi);
(b) yi ∈ Nθ2(xi−1, λi).

Proof Let us proceed by induction on i ≥ 1. (a) Using the definition of λ1 in (34), (24)
and the fact that y0 = x0 we conclude that (a) holds for i = 1. Assume now that it is true
for some i ≥ 1, i.e., yi−1 ∈ Nθ(xi−1, λi), for some i ≥ 1. If (36) holds true, then we can
use Algorithm 2’s definition and Corollary 3.2 to conclude that yi ∈ Nθ(xi, λi+1). If this is
not the case, then, in particular, it follows from (38) that xi = xi−1 and so by Algorithm
2’s definition and Corollary 3.1 we have that yi ∈ Nθ(xi−1, λi+1) = Nθ(xi, λi+1), which
completes the induction argument.

(b) This result is direct consequence of item (a), Algorithm 2’s definition and Lemma
3.1 (c). ut

For every j ≥ 1, define

Aj := {1 ≤ i ≤ j : step (3.a) is executed at iteration i}, aj := #Aj ,

Bj := {1 ≤ i ≤ j : step (3.b) is executed at iteration i}, bj := #Bj ,
(40)

where #C stands for the number of elements of a set C. Moreover, define

A :=

∞⋃
j=1

Aj , B :=

∞⋃
j=1

Bj . (41)
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To further simplify the converge analysis, define

K = {k ≥ 1 : k ≤ #A}, i0 = 0, ik = k-th element of A, (42)

and note that

i0 < i1 < i2 · · · , A = {ik : k ∈ K}. (43)

Before proceeding to the iteration-complexity analysis of Algorithm 2, we observe that
if {xi} is generated by Algorithm 2 then

xik−1 = xik−1
∀k ∈ K. (44)

Indeed, for any k ∈ K, by (41) and (43) we have {i ≥ 1 : ik−1 < i < ik} ⊂ B. Consequently,
by the definition of B in (41), and (38) we conclude that xi = xik−1

whenever ik−1 ≤ i < ik.
As a consequence, we obtain that (44) follows from the fact that ik−1 ≤ ik − 1 < ik.

Proposition 4.2 Let {xik}k∈K , {yik}k∈K and {λik}k∈K be generated by Algorithm 2 where,
for every k ∈ K, ik is defined in (42). For every k ∈ K, define

vik := ∇f(yik), εik := 0, τik := τ. (45)

Then, for all k ∈ K:

vik ∈ ∂εik f(yik),

‖λikvik + yik − xik−1
‖ ≤ σ‖yik − xik−1

‖,
λik‖yik − xik−1

‖ ≥ η,
xik = (1− τik)xik−1

+ τikyik .

(46)

As a consequence, the sequences {xik}k∈K , {yik}k∈K , {vik}k∈K , {εik}k∈K , {τik}k∈K and
{λik}k∈K are generated by Algorithm 1, i.e., Algorithm 2 with steps 0)–2), 3.a) and 4) is
a special instance of Algorithm 1.

Proof Note that the inclusion in (46) is a direct consequence of the convexity of f and the
first definition in (45). Moreover, the remaining statements in (46) follow from Algorithm
2’s definition, (42), (44), Proposition 4.1(a) and Corollary 3.2(a). The last statement of the
proposition follows from (46) and the definitions of Algorithms 1 and 2. ut

Analogously to the previous section, let D0 denote the diameter of the level set [f ≤
f(x0)], that is,

D0 = sup{‖x− y‖ : max{f(x), f(y)} ≤ f(x0)}. (47)

and denote:

E :=
τ
√
η(1− σ)

D3/2
0

, Ê :=
τE

2 + 3E
√
f(x0)− f(x)

. (48)

Theorem 4.1 Assume that 0 < D0 < ∞, let E and Ê be defined in (48) and let x be a
solution of (20). Let also {xik}k∈K and {yik}k∈K be generated by Algorithm 2. Then, for
every k ∈ K:

f(xik)− f(x) ≤ f(x0)− f(x)[
1 + k Ê

√
f(x0)− f(x)

]2 = O
(

1

k2

)
. (49)
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Moreover, for each k ∈ K (k ≥ 2) even, there exists j ∈ {k/2 + 1, . . . , k} such that

‖∇f(yij )‖ ≤ 4
3
√
η(1− σ)

 f(x0)− f(x)

τk
[
2 + k Ê

√
f(x0)− f(x)

]2


2/3

(50)

≤ 4

3

√
η(1− σ)Ê 4τ2 k2

= O
(

1

k2

)
. (51)

Proof The proof follows from the last statement in Proposition 4.2 and Theorem 2.2. ut

Next we analyze the sequence generated by Algorithm 2 for the indexes i ∈ B. The
following lemma is a direct consequence of Algorithm 2’s definition.

Lemma 4.1 For all i ≥ 1:

λi+1 = (1− τ)ai−biλ1.

Proposition 4.3 Let {λi} and {yi} be generated by Algorithm 2 and let x̄ be a solution of
(20). For any i ∈ B:

(a) ‖∇f(yi)‖ ≤
2θ2(1 + σ)

σL λ2i
;

(b) f(yi)− f(x̄) ≤ 2D0θ
2(1 + σ)

σL λ2i
.

Proof (a) Using Proposition 4.1(b) and (24) we have

λiL

2
‖λi∇f(yi) + yi − xi−1‖ ≤ θ2.

If i ∈ B, then λi‖yi − xi−1‖ < η and so, using the latter displayed equation and the triangle
inequality, we obtain

λiL

2
‖λi∇f(yi)‖ < θ2 +

Lη

2
,

which, in turn, combined with the definition of η in (34) gives Item (a).
(b) Since f is convex we have f(x̄) ≥ f(yi)+〈∇f(yi), x̄−yi〉. If follows from the last state-

ment in Proposition 4.2 and the first inequality in (8) that f(yi) ≤ f(x0). As a consequence,
using (47) and the fact that x̄ is a solution, we find f(yi) − f(x̄) ≤ ‖∇f(yi)‖‖yi − x̄‖ ≤
‖∇f(yi)‖D0. Now note that the desired result follows from the latter inequality and Item
(a). ut

The following corollary is a direct consequence of Lemma 4.1, Proposition 4.3 and the
definition of λ1 in (34).

Corollary 4.1 If i ∈ B, then:

(a) ‖∇f(yi+1)‖ ≤ θ(1 + σ)‖∇f(x0)‖
σ

(1− τ)2(bi−ai) ,

(b) f(yi+1)− f(x̄) ≤ θ(1 + σ)D0‖∇f(x0)‖
σ

(1− τ)2(bi−ai) .

In what follows we present our main results, namely the iteration-complexity of Algo-
rithm 2 to find approximate solutions of (20) in terms of function/gradient values.

Recall that D0 denotes the diameter of the sublevel determined by f(x0) and we are
assuming in this paper that 0 < D0 <∞.
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Theorem 4.2 Let x̄ ∈ H be a solution of (20) and let ρ > 0 be a given tolerance. Let also

Ê be defined in (48). Then, Algorithm 2 finds a point x ∈ H such that

f(x)− f(x̄) ≤ ρ (52)

in at most

M := 2

1 +
1

Ê

(
1
√
ρ
− 1√

f(x0)− f(x̄)

)+
+

⌈
2 +

1

2τ
log+

(
θ(1 + σ)D0‖∇f(x0)‖

σρ

)⌉
(53)

iterations.

Proof Define

M1 :=

1 +
1

Ê

(
1
√
ρ
− 1√

f(x0)− f(x̄)

)+
 , M2 := M − 2M1. (54)

We will consider two cases: (i) #A ≥ M1 and (ii) #A < M1. In the first case, it follows
from (49) and the definition of M1 in (54) that Algorithm 2 finds x ∈ H satisfying (52) in
at most M1 iterations. Since M ≥M1, we have the desired result.

Assume now that (ii) holds, i.e., #A < M1. Let j∗ ≥ 1 be such that #A = aj∗ = aj for
all j ≥ j∗ (see (40)). Consequently, if bi ≥M1 +M2, for some i ≥ j∗, we have

γi := bi − ai = bi −#A > bi −M1 ≥M2. (55)

Using the definition of M2 in (54), and (53), we have that the latter inequality gives

γi ≥
1

2τ
log

(
θ(1 + σ)D0‖∇f(x0)‖

σρ

)
,

which, in turn, combined with Corollary 4.1(b) and the definition of γi in (55) yields

ρ ≥ f(yi+1)− f(x̄),

i.e., the point x = yi+1 satisfies (52).
Since the index i ≥ j∗ has been chosen to satisfy bi ≥M1 +M2, and ai = #A < M1, we

conclude that, in this case, the total number of iterations to find a point x ∈ H satisfying
(52) is at most (M1 +M2) +M2 = 2M1 +M2 = M . ut

Theorem 4.3 Under the same assumptions of Theorem 4.2, Algorithm 2 finds a point
x ∈ H such that

‖∇f(x)‖ ≤ ρ (56)

in at most

M̃ := 2

⌈
1 +

2
√
ρ [η(1− σ)]

1/6
τ1/3Ê 2/3

⌉
+

⌈
2 +

1

2τ
log+

(
θ(1 + σ)‖∇f(x0)‖

σρ

)⌉
(57)

iterations.

Proof The proof follows the same outline of Theorem 4.2’s proof, just using (51) and Corol-
lary 4.1(a) instead of (49) and Corollary 4.1(b) , respectively. ut
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A Appendix

A.1 A rate of convergence result

Lemma A.1 Let {αk}k≥0 be a sequence of nonnegative real numbers such that

αk−1 + (1− τ)Dα3/2
k−1 ≥ αk +Dα3/2

k ∀k ≥ 1, (58)

where D > 0 and 0 < τ ≤ 1. Then,

αk ≤
α0[

1 +
τD√α0

2 + 3D√α0
k

]2 ∀k ≥ 0. (59)

Proof It follows from (58) that {αk}k≥0 is nonincreasing. Hence, if αj = 0, then the same holds for for all
k ≥ j and so that (59) is trivially true (whenever k ≥ j). Assume now that αj > 0 for some j ≥ 1. Define,
for 1 ≤ k ≤ j,

βk :=
√
αk, ϕk(t) := t2 +Dt3 −

(
β2
k−1 + (1− τ)Dβ3

k−1

)
, t ≥ 0.

Since ϕk is convex and increasing, and ϕk(βk−1) = τDβ3
k−1 > 0 and, because of (58), ϕk(βk) ≤ 0 we obtain

βk ≤ βk−1 −
ϕk(βk−1)

ϕ′k(βk−1)
= βk−1

(
1−

τDβk−1

2 + 3Dβk−1

)
∀k ≤ j.

Thus, for 1 ≤ k ≤ j,

1

βk
≥

1

βk−1

1(
1−

τDβk−1

2 + 3Dβk−1

) ≥ 1

βk−1

(
1 +

τDβk−1

2 + 3Dβk−1

)

=
1

βk−1
+

τD
2 + 3Dβk−1

≥
1

βk−1
+

τD
2 + 3Dβ0

≥
1

β0
+

τD
2 + 3Dβ0

k,

which after some trivial algebraic manipulations gives (59). ut

A.2 Proof of results from Section 2

Proof of Proposition 2.1:

Proof The inclusion and the first inequality in (6) are, respectively, equivalent to

f(x) ≥ f(yk) + 〈vk, x− yk〉 − εk ∀x ∈ H, (60)

〈vk, xk−1 − yk〉 − εk ≥
λk

2
‖vk‖2 +

(1− σ2)

2λk
‖yk − xk−1‖2. (61)

Using (60) with x = xk−1, (61) and the fact that t+ 1/t ≥ 2 for all t > 0 we find

f(xk−1)− f(yk) ≥
λk

2
‖vk‖2 +

(1− σ2)

2λk
‖yk − xk−1‖2

=
λk

2
‖vk‖2

(
1 +

1− σ2

µ2

) [
µ :=

‖λkvk‖
‖yk − xk−1‖

]

=
λk

2
‖vk‖2

√
1− σ2

µ

(
µ

√
1− σ2

+

√
1− σ2

µ

)

≥ λk‖vk‖2
√

1− σ2

µ
. (62)
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Direct use of the definition of µ and the large-step condition, i.e., the second inequality in (6), yield
√
‖vk‖ ≥√

µη/λk. Moreover, the definition of µ and Lemma 2.1 imply 1 + σ ≥ µ. The two last inequalities and (62)
yield

f(xk−1)− f(yk) ≥ λk‖vk‖3/2
√
‖vk‖

√
1− σ2

µ

≥ ‖vk‖3/2
√
η(1− σ2)

µ
≥
√
η(1− σ)‖vk‖3/2. (63)

Analogously, we have

f(xk−1)− f(yk) ≥
λk

2
‖vk‖2 +

(1− σ2)

2λk
‖yk − xk−1‖2 ≥

(1− σ2)

2λk
‖yk − xk−1‖2,

which, in turn, combined with (63) yields,

f(xk−1)− f(yk) ≥ max

{√
η(1− σ)‖vk‖3/2,

(1− σ2)

2λk
‖yk − xk−1‖2

}
=: Mk. (64)

Note now that from (7) and the convexity of f we have τkf(yk) + (1 − τk)f(xk−1) ≥ f(xk). Multiplying
both sides of (64) by τk, using the fifth remark after Algorithm 1 and summing the resulting inequality to
the latter inequality we obtain

f(xk−1)− f(xk) ≥ τkMk, (65)

which together with (64) and the fact that τ ≤ τk ≤ 1 gives the first inequality in (8). To finish the proof
note that the second inequality in (8) is a direct consequence of first inequality in (6). ut

Proof of Lemma 2.2:

Proof From the inclusion in (6) and the definition of ε-subdifferential we have

f(yk)− f(x) ≤ ‖vk‖‖yk − x‖+ εk.

On the other hand, from the first inequality in (6) and Lemma 2.1 we obtain

εk ≤
σ2

2(1− σ)
‖vk‖‖yk − xk−1‖.

Using Proposition 2.1 and the fact that x is a solution of (1), we also obtain max{f(yk), f(x), f(xk−1)} ≤
f(x0). Using the latter inequality, (10) and the two above displayed equations we find

f(yk)− f(x) ≤ D0

(
1 +

σ2

2(1− σ)

)
‖vk‖.

The latter inequality, Proposition 2.1 (the first inequality in (8)) and (11) yields

f(xk−1)− f(xk) ≥ D (f(yk)− f(x))3/2 .

Using the above inequality together with (7), the convexity of f and of the scalar function 0 ≤ t 7→ t3/2,
and the fact that τ ≤ τk ≤ 1 we obtain

[f(xk)− f(x)]3/2 − (1− τ) [f(xk−1)− f(x)]3/2 ≤ [f(yk)− f(x)]3/2

≤
[f(xk−1)− f(xk)]

D
,

which is clearly equivalent to (12). ut

Proof of Theorem 2.1:

Proof First note that (14) is a direct consequence of Lemma2.2, Lemma A.1 with αk := f(xk) − f(x) (for
all k ≥ 1) and (13).

Assume now that k ≥ 2 is even. It follows from the latter assumption and Proposition 2.1 that there
exists j ∈ {k/2 + 1, . . . , k} such that

f(xk/2)− f(xk) =
k∑

i=k/2+1

[f(xi−1)− f(xi)]

≥
k

2
τ max

{√
η(1− σ)‖vj‖3/2,

(1− σ2)

σ2
εj

}
.

After some trivial algebraic manipulations, the above inequality together with (13) and (14) gives (15) and
(16). ut
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Proof of Theorem 2.2:

Proof First note that the assumption εk = 0 for all k ≥ 1 (together with the definition of E) implies that
(12) holds with E replacing D. The rest of the proof follows the same outline of Theorem 2.1’s proof. ut
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