Cálculo B - Lista 15

Integrais Triplas

Calcule as integrais triplas

- 1. $\int_{\Omega} e^y \ dV$ Ω é a região limitada pelos planos $y=1,\,z=0,\,y=x,\,y=-x$ e z=y.
- 2. $\int_{\Omega} zy \ dV$ Ω é a região limitada superiormente pelo plano z=1 e inferiormente pelo cone $z=\sqrt{x^2+y^2}$.
- 3. $\int_{\Omega} xz \ dV$ Ω é a região no primeiro octante limitada superiormente pela esfera $x^2 + y^2 + z^2 = 4$, inferiormente pelo pano z = 0 e lateralmente pelos planos x = 0, y = 0 e pelo cilindro $x^2 + y^2 = 1$.
- 4. $\int_{\Omega} (3x+xz) \ dV$ Ω é a região limitada pelo plano y=0, o cilindro $x^2+z^2=9$ e o plano y+z=3.
- 5. $\int_{\Omega} z \ dV$ Ω é a região limitada superiormente pela esfera $x^2 + y^2 + z^2 = 9$, inferiormente pelo plano z = 0 e lateralmente pelos planos x = -1, x = 1, y = -1 e y = 1.

Determine o volume das regiões a seguir

- 6. Ω é a região no primeiro octante limitada pelos planos $z=10+x+y,\,y=2-x,\,y=x,\,z=0$ e x=0.
- 7. Ω é a região limitada superiormente pelo parabolóide circular $z=4(x^2+y^2)$, inferiormente pelo plano z=-2, e lateralmente pela parábola $y=x^2$ e o plano y=x.
- 8. Ω é a região limitada inferiormente pelo plano z=0, superiormente pelo plano x+z=4, e lateralmente pelo cilindro $x^2+y^2=9$.
- 9. Ω é a região limitada pelos planos coordenados e pelo plano 6x+4y+3z=12
- 10. Ω é a região limitada inferiormente pelo plano z=0, superiormente pelo parabolóide $x^2+y^2=4z$ e lateralmente por $x^2+y^2=4x$.
- 11. Mostre que o volume do elipsóide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ é $\frac{4}{3}\pi abc$.

Calcule as integrais triplas usando coordenadas cilíndricas

12.
$$\int_{\Omega} x^2 dV$$

 $\Omega := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, \ 0 \le z \le 1\}.$

13.
$$\int_{\Omega}z\ dV$$
 Ω é a região do primeiro octante quadrante no interior da bola $x^2+y^2+z^2\leq 1$.

14.
$$\int_{\Omega} xz \ dV$$

$$\Omega \text{ \'e a bola } x^2 + y^2 + z^2 \le 4$$

15.
$$\int_{\Omega} \sqrt{x^2 + y^2} \ dV$$

 Ω é a região limitada superiormente pelo plano $y + z = 4$, inferiormente pelo plano $z = 0$ e lateralmente pelo cilindro $x^2 + y^2 = 16$.

Calcule as integrais triplas usando coordenadas esféricas

16.
$$\int_{\Omega}z^2\;dV$$

$$\Omega \mbox{ \'e a região entre as esferas }x^2+y^2+z^2=1\mbox{ e }x^2+y^2+z^2=4$$

17.
$$\int_{\Omega} \frac{1}{x^2 + y^2 + z^2} dV$$
 Ω é a região acima do plano $z = 0$, limitada pelo cone $z = \sqrt{3x^2 + 3y^2}$ e as esferas $x^2 + y^2 + z^2 = 9$ e $x^2 + y^2 + z^2 = 81$.

18.
$$\int_{\Omega} 3 \ dV$$

 Ω é o hemisfério $x^2 + y^2 + z^2 < 1, \ x > 0.$

Respostas

1.
$$2e - 4$$

3.
$$\frac{17}{30}$$

8.
$$36\pi$$

10.
$$6\pi$$

12.
$$\frac{\pi}{4}$$

13.
$$\frac{\pi}{16}$$

15.
$$\frac{512\pi}{3}$$

15.
$$\frac{512\pi}{3}$$
16. $\frac{124\pi}{15}$

17.
$$6\pi(2-\sqrt{3})$$

18.
$$2\pi$$