Cálculo C - Lista 6

Teorema de Green

Determine $\int_{\gamma} M(x,y)\,dx + N(x,y)\,dy$ onde γ é orientada no sentido anti-horário.

- 1. $\int_{\gamma} y \, dx$, onde γ a curva no primeiro quadrante formada por parte do círculo $x^2 + y^2 = 4$ e dos intervalos [0,2] nos eixos $x \in y$.
- 2. $\int_{\gamma} xy \, dx + (x^{\frac{3}{2}} + y^{\frac{3}{2}}) \, dy$, onde γ é borda do quadrado com vértices (0,0), (1,0), (1,1), (0,1).
- 3. $\int_{\gamma} (x^2 + y^2)^{\frac{3}{2}} dx + (x^2 + y^2)^{\frac{3}{2}} dy$, onde γ é o círculo $x^2 + y^2 = 1$.

Use o teorema de Green para calcular a integral de linha. Assuma que cada curva é orientada no sentido anti-horário.

- 4. $\int_{\gamma} e^x \sin y \, dx + e^x \cos y \, dy$ onde γ é composta de parte do gráfico de $\sqrt{x} + \sqrt{y} = 5$ e dos intervalos [0, 25] nos eixos x e y.
- 5. $\int_{\gamma} xy \, dx + \left(\frac{1}{2}x^2 + xy\right) dy$ onde γ é composta do intervalo [-1,1] sobre o eixo x e a parte de cima da elipse $x^2 + 4y^2 = 1$.
- 6. $\int_{\gamma} (\cos^3 x + e^x) \, dx + e^y \, dy$ onde γ é o gráfico de $x^6 + y^8 = 1$.

Nos exercícios a seguir use o teorema de Green para calcular as integrais de linha $\int_{\gamma} \vec{F} \cdot d\vec{r}$, onde γ é orientada no sentido anti-horário.

- 7. $\vec{F}(x,y) = y\vec{i} + 3x\vec{j}$ onde γ é o círculo $x^2 + y^2 = 4$.
- 8. $\vec{F}(x,y) = y \sin x \vec{i} \cos x \vec{j}$ onde γ é composta do semi-círculo $x^2 + y^2 = 9$ com $y \ge 0$ e a linha y = 0 com $-3 \le x \le 3$.

Nos exercícios a seguir use o teorema de Green para encontrar a área da região dada.

- 9. A região limitada pelo eixo y, a linha $y=\frac{1}{4}$ e a curva parametrizada por $\vec{r}(t)=\sin \pi t \, \vec{i}+t(1-t)\, \vec{j}$ com $0\leq t\leq \frac{1}{2}.$
- 10. Sejam

$$M(x,y) = \frac{-y}{x^2 + y^2}, \quad N(x,y) = \frac{x}{x^2 + y^2}$$

(a) Verifique que

$$\int_{\gamma} M(x,y) \, dx + N(x,y) \, dy = \int_{D} dA \bigg(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \bigg)$$

onde D é a região limitada pelos círculos: $x^2 + y^2 = 4$ orientado no sentido anti-horário e $x^2 + y^2 = 1$ orientado no sentido horário.

(b) Mostre que

$$\int_{\gamma} M(x,y) \, dx + N(x,y) \, dy \neq \int_{D} dA \bigg(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \bigg)$$

onde D é o disco cuja borda é o círculo $x^2+y^2=1$

- (c) O resultado em (b) viola o teorema de Green? Explique.
- 11. Assuma que D é uma região do plano. Sejam γ_1 e γ_2 curvas suaves fechadas em D ambas orientadas no sentido anti-horário. Suponha que $\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}$ em D. Use o teorema de Green para mostrar que

$$\int_{\gamma_1} M(x, y) \, dx + N(x, y) \, dy = \int_{\gamma_2} M(x, y) \, dx + N(x, y) \, dy$$

12. (a) Seja γ o segmento de reta no plano unindo os pontos (x_1, y_1) e (x_2, y_2) . Mostre que

$$\frac{1}{2} \int_{\gamma} x \, dy - y \, dx = \frac{1}{2} (x_1 y_2 - x_2 y_1)$$

(b) Considere um polígono orientado no sentido anti-horário cujos vértices são $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$. Usando a parte (a) mostre que a área do polígono é dada por

$$A = \frac{1}{2}(x_1y_2 - x_2y_1) + \frac{1}{2}(x_2y_3 - x_3y_2) + \dots + \frac{1}{2}(x_{n-1}y_n - x_ny_{n-1}) + \frac{1}{2}(x_ny_1 - x_1y_n)$$

(c) Encontre a área do quadrilátero com vértices (0,0), (1,0), (2,3), (-1,1).

Respostas

1.
$$-\pi$$
 2. $\frac{1}{2}$ 3. 0 4. 0

5.
$$\frac{1}{6}$$
 6. 0 7. π 8. 0,

9.
$$\frac{1}{\pi} - \frac{2}{\pi^2}$$
 10. Não 12. (c) 4