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Abstract

We obtain the Galilei electrodynamics developed by M. Levy-Leblond and M.

Le Bellac as an application of a recent scheme we have proposed for unifying the

Galilei and the special relativity, which is based on a reinterpretation of the absolute

time of the Galilei relativity. We achieve this by defining two coordinate systems

for spacetime that we have called the Galilei and the Lorentz systems, and we

show how the relation between those systems allows us to develop a tensor calculus

that transfer the Maxwell equations of the classical electrodynamics to the Galilei

system. Then, by using a suitable low velocity limit, we show how the Maxwell

equations in the Galilei system become the fundamental equations of the Galilei

electrodynamics.
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y xα ≡ (x0, xi) := (ct, ~x): coordenadas (naturalmente contravariante)

y dτ 2 := dt2 − 1
c2
d~x 2: tempo-próprio

= dt2
(

1− 1
c2

(
d~x
dt

)2)
∴ dτ =

√
1− 1

c2

(
d~x
dt

)2
dt

y uα := dxα

dτ
:= (dx

0

dτ
, dx

i

dτ
): 4-velocidade (contravariante)

yy d~x
dτ

= d~x
dt

dt
dτ

= d~x
dt

1√
1− 1

c2

(
d~x
dt

)2 ≡ γv~v

yy dx0

dτ
= cdt

dτ
= c 1√

1− 1
c2

(
d~x
dt

)2 ≡ γvc

onde

γv :=
√

1− v2

c2

~v := d~x
dt

∴ uα = (γvc, γv~v)

y ηαβ : η00 = −1, η0i = ηi0 = 0, ηij = δij: métrica

y xα := ηαβx
β

xα ≡ (x0, xi) := (η0βx
β, ηiβx

β) = (−x0, xi) = (−ct, ~x)

y uα = ηαβu
β = ηαβ

dxβ

dτ
=

d(ηαβx
β)

dτ
= dxα

dτ

uα ≡ (u0, ui) = (η0βu
β, ηiβu

β) = (−u0, ui) = (−γvc, γv~v)

∴ uα = (−γvc, γv~v)

y ~E = (Ei), ~B = (Bi)

Definimos um tensor antissimétrico:

F µν : F 0i := Ei, F
ij := εijkBk

∴ E1 = F 01, E2 = F 02, E3 = F 03

B1 = F 23, B2 = F 31, B3 = F 12
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The rising of Einstein’s special relativity in 1905 has placed since then the Galilei

relativity as an approximation of the former theory when we consider inertial reference

frames having relative velocity with a magnitude that is sufficiently low as compared to

the speed of light. Among the roots of special relativity we find classical electrodynamics,

whose main equations are invariant under the Lorentz group that includes the Lorentz

boost as a particular case (here, we refer the Lorentz boost simply by Lorentz transforma-

tion). Here, in the same way as the kinematical equations of special relativity in a certain

low velocity limit become the kinematical equations of the Galilei relativity, one could

ask what theory emerges as the low velocity limit of the Maxwell equations of classical

electrodynamics? Would it exhibit invariance under a sort of Galilei transformation for

the fields, the charge and the current densities? Those questions were addressed long ago

by M. Levy-Leblond and M. Le Bellac [1] who obtained the so-called Galilei electrody-

namics as the correct Galilean limit of the classical electrodynamics, which constitutes a

consistent non-relativistic limit for the Maxwell’s equations. In their work they showed

this non-relativistic limit is not concerned with simply taking c → ∞ in the Maxwell’s

equations since the explicit presence of the speed of light c in these equations depends

on the choice of the system of units being used. In fact, in their attempt to solve those

subtleties, Levy Leblond and Le Bellac argued on the convenience of the SI system in or-

der to set a correct non-relativistic limit for the Maxwell’s equations together with some

restrictions on the electric and magnetic fields that encompasses two distinct models, the

so-called electric and magnetic limits (in fact, there is also a third model, the General

Galilean Electromagnetism).

One of the interests on studying the Galilean limit of the Maxwell’s equations is to

provide a criteria to understand which electromagnetic effects can be reasonably described

by a nonrelativistic theory and then to exhibit such a theory, and also to distinguish those

phenomena having their description only in a relativistic context [1]. Another interest is to

provide a suitable Galilei transformation for the electromagnetic fields that corrects some

low velocity formulas given in some textbooks. Besides that, as a natural development

of these ideas, some authors have continued the study of the Galilei electrodynamics

considering other aspects, for instance, some applications in quantum mechanics and

superconductivity [2]; the form of the electromagnetic potentials and the gauge conditions

in the Galilean limits [2], [3], [4], and so on. Recently, some developments [5], [6] brought

new insight into the original work of [1], where the authors considered alternative ways to

obtain the electric and the magnetic limits. Our present work falls into this category as

we intend to show how the electric, the magnetic, and the general Galilei electrodynamics

obtained in [1] follow as a natural consequence of a recent scheme we proposed to unify

the Galilei and the special relativity as we now describe.
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In a previous work [7], we presented a method for unifying the Galilei and the special

relativity into a single model. This unification was performed through the introduction of

an absolute time that plays the role of the time variable of the Galilei relativity, together

with the local time t, which is the ordinary time of the special relativity. In terms of these

time variables there are two views one can employ to describe events, each one being

adapted to the particularities of either the Galilei or the special relativity. Thus, events

described within the realm of the Galilei relativity are defined by a coordinate set {τ, ~x},
while special relativity considers for set {t, ~x} (we assume the space coordinates to be

the same in both views). As we have shown in [7], in order to combine the Galilei and

the special relativity into one single model we first need to extend the previous variables

set to {τ, t, ~x}. Then, given two inertial frames S, S ′ moving with relative velocity ~v we

assume between the respective sets {τ, t, ~x}, {τ ′, t′, ~x ′} the relations

τ ′ = τ

~x ′ = ~x− ~vτ (1)

c2t′2 − ~x ′2 = c2t2 − ~x2 .

As a result, assuming a linear relation between t and t′ we obtain

τ = (1− a)
~x · ~v
v2

+
√
a2 − 1

c

v
t = (1− a)

~x ′ · (−~v)

v2
+
√
a2 − 1

c

v
t′ = τ ′ (2)

which provides a relation between the absolute time τ and the local time t, t′, with a being

an arbitrary parameter.

Here, in our current work, we will show how relation (2) allows us to introduce two

sets of coordinates systems, denoted by Xµ
G, Xµ

L, which define the Galilei and the Lorentz

systems, each one encoding respectively the transformation properties that are common ei-

ther to the Galilei or to the special relativity. Furthermore, we assume the Maxwell’s equa-

tions as naturally described with respect to the Lorentz system. Then, using ∂Xµ
G/∂X

ν
L

as transformations coefficients we transfer all fields and the Maxwell’s equations to the

Galilei system. In this way we introduce from the electric and the magnetic fields of the

standard Maxwell theory, e.g. ~EL, ~BL (thought as components of a tensor FLµν or FµνL )

the corresponding Galilean analogues, ~EG, ~BG, and, in an similar way, we set the Galilean

transformations of ~EG, ~BG from the Lorentz transformation of ~EL, ~BL. Therefore, the

equations satisfied by the Galilean fields are obtained directly from the Maxwell equations

by replacing ~EL, ~BL by their expressions in terms of ~EG, ~BG together with the transfor-

mation expressing the derivatives relative to Xµ
L in terms of the derivatives relative to

Xµ
G. Once this is performed, we are ready to show how the electric and the magnetic lim-

its employed in [1] arise from the corresponding Galilean form of the Maxwell equations

when we take a suitable limit case. This indicates that the unification of the Galilei and
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the special relativity exhibited in our previous work [7] and based on the fundamental

relation between τ, t expressed by (2) extends beyond the kinematical aspects of both rela-

tivities, reproducing the correct Galilean limit of the relativistic Maxwell electrodynamics

as discovered by Levy Leblond and Le Bellac.

Our work is organized as follows. In section 2 we set our notations and review the

basics aspects of the Maxwell electrodynamics that we will use in the subsequent sections.

In section 3 we review the main elements of [7]. We base our analysis on a class of trans-

formations parameterized by a real parameter a, with |a| > 1, that we call Generalized

Lorentz Transformations (GLT) and that follows from the conditions given in (1). Then,

we formulate Maxwell electrodynamics as being invariant under the GLT. Compared to

the standard Maxwell theory, this brings a modification to the form of the transformations

of the electromagnetic fields but doesn’t change the form of the Maxwell equations. We

also show that the GLT includes the ordinary Lorentz transformation as a particular case,

and in such case the GLT transformation for the fields and the four-current become the

usual Lorentz transformation for the fields and the four-current of the standard Maxwell

theory. In section 5 we explain how to perform the Galilean limit of our model. We

also employ the same approximation used by Leblond and Le Bellac [1], for instance,

c|ρ| � |~j| and | ~E| � c| ~B| in the magnetic limit, and c|ρ| � |~j| and | ~E| � c| ~B| in

the electric limit. Besides that, our limit is obtained employing the limit 1
c2
→ 0 after

making a Taylor expansion in terms of ṽ
c

of the parameter a. In section 7 we develop

the Galilei electrodynamics employing the “tensor calculus” determined from the relation

between the two coordinate systems Xµ
G and Xµ

L. Then, we show how the three Galilean

models of [1] arise by applying the Galilean limit of section 5. In particular, we pay a

special attention to the third model of [1], the general Galilean electromagnetism, that is

formulated in terms of the four fields ~EL, ~BL, ~DL, ~HL. After defining the corresponding

Galilei fields ~EG, ~BG, ~DG, ~HG we show that it is possible to derive appropriate constitutive

relations among the Galilean fields that preserve the Galilei invariance, a feature that is

not possible in the treatment of Leblond and Le Bellac.

In our work we will use only the CGS system of units. The need for that is because

we take the electric and the magnetic fields as components of tensors Fµν , Fµν , which is

suitably introduced within the CGS system.

2 Maxwell electrodynamics

In order to fix our notation, we will recall briefly some aspects of the standard Maxwell

electrodynamics [8]. Spacetime is described by coordinates xµ ≡ (x0, xi) := (ct, ~x), with

c being the speed of ligth in vacuum. We also write xµ := ηµνx
ν = (ct,−~x). The electric
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and the magnetic fields are accommodated as components of two antisymmetric tensors

Fµν , Fµν according to

Bi = −1
2
εijkFjk = −1

2
εijkF jk

Ei = F0i = −F0i .
(3)

Then, the Maxwell equations in vacuum become

∂µFνλ + ∂νFλµ + ∂λFµν = 0

∂µFµν = 4π
c
Jν

Jµ = (cρ,~j)





~∇× ~E + 1

c
∂t ~B = 0

~∇ · ~B = 0
~∇ · ~E = 4πρ
~∇× ~B − 1

c
∂t ~E = 4π

c
~j .

(4)

In the presence of a material medium the previous Maxwell equations in vacuum must

be changed due to extra contributions to the density of charge and current produced by

the medium. Now, in addition to the electric and magnetic fields ~E, ~B, we also have the

fields ~D, ~H that are accommodated as components of another antisymmetric tensor Hµν

according to

Hi = −1
2
εijkHjk = −1

2
εijkHjk

Di = H0i = −H0i .
(5)

Here, Maxwell’s equation in the presence of a medium becomes [8]

∂µFνλ + ∂νFλµ + ∂λFµν = 0

∂µHµν = 4π
c
Jν

Jµ = (cρ,~j)





~∇× ~E + 1

c
∂t ~B = 0

~∇ · ~B = 0
~∇ · ~D = 4πρ
~∇× ~H − 1

c
∂t ~D = 4π

c
~j .

(6)

In most cases the fields ~D, ~H relate to the fields ~E, ~B through the polarization and

magnetization vectors, ~P , ~M by the constitutive relations

~D := ~E + 4π ~P
(7)

~H := ~B − 4π ~M .

3 An overview of some previous results concerning

the Galilei relativity and the special relativity

Here, we briefly recall some of the concepts introduced in [7], which we refer the reader

for details. Let S and S ′ be two inertial reference frames moving with relative velocity
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~v. Let P be an event. According to the Galilei relativity let us assume both observers

record this event as (τ, ~x) and (τ, ~x ′). The relation between their readings is

~x ′ = ~x− ~vτ . (8)

In order to relate the Galilei relativity with the framework of special relativity we assume

the existence of another time variable, the local time of the special relativity, denoted by

t. Now, let us assume that in terms of these coordinates each observer has recorded the

event P as (t, ~x) and (t′, ~x ′). Here, the fundamental relation one imposes between these

variables is that

c2t2 − ~x2 = c2t′2 − ~x ′ 2 . (9)

Now, if we assume a linear relation between t and t′ as

t′ = at+ b~v · ~x (10)

with a and b arbitrary real coefficients, the fulfillment of equations (8, 9) by the set

{τ, t, t′, ~x, ~x ′} and the assumptions stated in [7] gives

b =
√
a2 − 1

1

vc
(11)

and

τ = (1− a)
~x · ~v
v2

+
√
a2 − 1

c

v
t = (1− a)

~x ′ · (−~v)

v2
+
√
a2 − 1

c

v
t′ = τ ′ (12)

together with the so-called Generalized Lorentz Transformation (GLT){
~x ′ = ~x− (1− a) 1

v2
~x · ~v ~v −

√
a2 − 1 1

v
c t~v

t′ = at−
√
a2 − 1 1

vc
~x · ~v

(13)

which represents a family of transformations parameterized by a real parameter a that is

assumed to depend arbitrarily on the speed v between the frames, and to satisfy a > 1.

Since we are considering the absolute time τ and the physical time t we must distin-

guish between two velocities

~v =
d~xSS ′

dτ
, ~̃v =

d~xSS ′

dt

that are related by

~̃v = ~v

√
a2 − 1

a

c

v
(14)
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with ~xSS′ denoting the position of the origin of the frame S ′ as seen by frame S. In terms

of ṽ given in (14) the parameter a becomes

a =
1√

1− ṽ2

c2

≡ γṽ (15)

and the GLT transformation given in (13) assumes the form ~x ′ = ~x− (1− γṽ)~x·
~̃v
ṽ2
~̃v − γṽt~̃v

t′ = γṽ

(
t− ~x·~̃v

c2

) (16)

which is the usual Lorentz transformation.

One should notice that the GLT given in (13) is parameterized in terms of the relative

velocity ~v =
d~xSS ′
dτ

, while the ordinary Lorentz transformation is parameterized in terms

of ~̃v =
d~xSS ′
dt

. The parameter a in the GLT is assumed to depend on the speed v, but as

we see from (14), whatever might be the dependence of a with v we will always obtain

the same expression for a in terms of ṽ as given in (15). Therefore, we understand the

standard Lorentz transformation as being universal in the sense that whenever we write

a in terms of ṽ the GLT becomes the ordinary Lorentz transformation.

Under the transformation (13) the electromagnetic fields and the four-current trans-

form as  ~E ′ = a ~E + (1− a) 1
v2
~v · ~E ~v +

√
a2 − 1 1

v
~v × ~B

~B′ = a ~B + (1− a) 1
v2
~v · ~B ~v −

√
a2 − 1 1

v
~v × ~E

(17)

 ~D′ = a ~D + (1− a) 1
v2
~v · ~D~v +

√
a2 − 1 1

v
~v × ~H

~H ′ = a ~H + (1− a) 1
v2
~v · ~H ~v −

√
a2 − 1 1

v
~v × ~D .

(18)

 ρ′ = aρ−
√
a2 − 1 1

cv
~v ·~j

~j ′ = ~j +
(
−
√
a2 − 1 c

v
ρ− (1− a) 1

v2
~v ·~j

)
~v .

(19)

It is straightforward to check that the Maxwell equations (4), (6) are invariant under the

transformations of the coordinates (13), the fields (17) and (18), and the four-current

(19).

In terms of the velocity ~̃v given in (14) the previous transformations become the usual
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transformations for the fields and 4-current under a Lorentz transformation

~E ′ = γ ~E + (1− γ)
1

ṽ2
~̃v · ~E ~̃v +

1

c
γ ~̃v × ~B (20)

~B′ = γ ~B + (1− γ)
1

ṽ2
~̃v · ~B ~̃v − 1

c
γ~̃v × ~E (21)

~D′ = γ ~D + (1− γ)
1

ṽ2
~̃v · ~D~̃v +

1

c
γ ~̃v × ~H (22)

~H ′ = γ ~H + (1− γ)
1

ṽ2
~̃v · ~H ~̃v − 1

c
γ~̃v × ~D (23)

ρ′ = γ
(
ρ− 1

c2
~̃v ·~j

)
(24)

~j ′ = ~j − (1− γ)
1

ṽ2
~̃v ·~j ~̃v − γρ~̃v . (25)

Remark: Equation (12) may be seen as an operational definition for the absolute time τ

that is determined by the measurement of the local time t, t′, and the space coordinates

where the event occurred ~x, ~x ′. Conversely, (12) may also be seen as an expression for

the local time in terms of the absolute time and the relative velocity of the frames, an

interpretation that suggests the local time depends on the state of motion of the observers

(in order to explicitly indicate this we could have written t and t′ as tSS ′ , t′SS ′). As a

consequence of this interpretation the local time doesn’t attain the meaning of an intrinsic

quantity defined uniquely with respect to a single frame. This view is also indicated from

the idealized form on how the local time is established. In fact, the instants t and t′ are

recorded by clocks that are placed in the positions where the event occurred. Since these

clocks (at rest relative to the same frame) are all synchronized and arranged in such way

as to mark t = t′ = 0 when the origins of the reference systems coincide, it is plausible

to admit their functioning is somehow adjusted to the peculiarities of the relative motion

between the frames. A similar and more complete discussion on this issue is given by

Horwitz, Arshansky and Elitzur in [11] where they distinguished between two aspects of

time, one that considers time as an extra dimension in a four dimensional space, and the

other that envisages time as associated to a change or development, which they call process

time, having the particularity that “in relativity then, the time at which an event occurs

depends on the state of motion of the frame (and the clocks attached to it)” (pg. 1163).

They go a step further in their discussion and analyze the role of a generating apparatus

that records cycles that allow for the counting of time and observe that “although it is

a generally accepted notion that an event is described by its spacetime coordinates x and

t alone, we see that the state of motion of the generating apparatus is essential in the

structure of this scheme. We shall say that an event also has the property of motion;

the complete description of an event requires a specification of this state of motion” (pg.

1164).

In our work, we borrow this interpretation of the local time as depending on the state of
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motion, and consider the absolute time τ as an intrinsic quantity that is set independently

for each frame in the sense that it doesn’t need a pair of frames to be defined and, in

particular, it has the property that each frame registers the same value for the absolute

time associated to the occurrence of an event (which is indicated by the equation τ = τ ′).

As a consequence of using (13) into (12) we obtain

t+ t′ = τ
v(1 + a)

c
√
a2 − 1

(26)

then, if the absolute time is independent on the state of motion we conclude that in our

formalism the relation (26) indicates the local times t, t′ are set in connection with the

relative state of motion of the frames S, S ′ without explicit dependence on the position of

the event (at least with respect to the combination t+t′). As we will see in further sections

we will also extend this notion to the dynamical fields assuming that some quantities (the

so-called Galilean fields) depends on the state of motion of the observers.

The arbitrariness of the parameter a in the GLT (13) allow us to make some choices

for a that may be of particular interest. We analyze some cases.

• Let us assume S ′ is the rest frame of a particle that moves with velocity ~v relative to

another frame S. Let us denote the infinitesimal proper time of the particle as dT , where

dT = dt′. We obtain from (12) the following relation between the proper time and the

absolute time

dτ =
√
a2 − 1

c

v
dT . (27)

If we conceive the absolute time as a quantity that doesn’t depend on the state of motion

of the particle then, since the proper time is an intrinsic quantity of the particle that also

doesn’t depend on the state of motion the particle, we must have

d

dv

(√
a2 − 1

c

v

)
= 0 (28)

which fixes a =
√

1 + v2k2 with k an arbitrary integration constant. If we wish to ensure

a dimensionless unit for a we may choose, for example, k = 1/c, then

a =

√
1 +

v2

c2
. (29)

Using this expression for a in (14) we end up with

~v = γṽ ~̃v . (30)

If we consider ~̃v → ~c, then γṽ →∞ and consequently we would have ~v →∞ that implies

an instantaneous propagation for the light.
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• Another possibility for fixing a(v) is to eliminate the dependence on the relative speed

v in equation (26). In fact, from (26) let us introduce a function f(v) := v(1+a)

c
√
a2−1 , where

a ≡ a(v). Then, let us impose that df
dv

= 0, which gives v da
dv

= a2 − 1 or

a =
1 + k2v2

1− k2v2
(31)

with k ∈ R an arbitrary constant. For this choice of a we have

t+ t′ =
1

kc
τ

that eliminates any dependence of the local and the absolute time with respect to the

relative speed v, which provides an alternative to the interpretation that events depends

on the state of motion of the observer.

• A third possibility arises if we impose that ~̃v = ~v, then equation (14) fixes

a(v) =
1√

1− v2

c2

(32)

and with this choice the GLT (13) becomes the ordinary Lorentz transformation{
~x ′ = ~x− (1− γv) 1

v2
~x · ~v~v − γvt~v

t′ = γv(t− ~x·~v
c2

) .
(33)

As we see from (29, 31, 32) there are many possible choices for the parameter a, but in all

cases it determines the same form for a(ṽ), which results on the same ordinary Lorentz

transformation (16) expressed in terms of ~̃v. In what follows we will consider a(v) as an

arbitrary function of v that assumes the same form in terms of ṽ as given in (15).

4 The Galilei electrodynamics of Lévy-Leblond and

Le Bellac

In order to compare our development with the original formalism of the Galilei electrody-

namics developed by Levy-Leblond and Le Bellac we review some aspects of [1] where the

authors obtained two models for the Galilei electrodynamics depending on the assump-

tions below (in CGS units):

1. ṽ/c� 1, |~j| � cρ, | ~B| � | ~E|: The electric limit

2. ṽ/c� 1, cρ� |~j|, | ~E| � | ~B|: The magnetic limit

• The electric limit
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In the case of the electric limit the assumption that ṽ/c � 1, |~j| � cρ gives for the

components of the four-current (24, 25) the following transformation

ρ′ = ρ, ~j ′ = ~j − ρ~̃v (34)

and for the electric field transformation (20) we have

~E ′ =
1√

1− ṽ2

c2

~E +

(
1− 1√

1− ṽ2

c2

)
1

ṽ2
~̃v · ~E ~̃v +

1

c

1√
1− ṽ2

c2

~̃v × ~B

' ~E +
~̃v

c
× ~B

' ~E (35)

where the last approximation is justified because when ṽ
c
� 1 and B � E we get

~̃v
c
× ~B �

~E.

For the magnetic field transformation (21) we have

~B′ =
1√

1− ṽ2

c2

~B +

(
1− 1√

1− ṽ2

c2

)
1

ṽ2
~̃v · ~B ~̃v − 1

c

1√
1− ṽ2

c2

~̃v × ~E

' ~B −
~̃v

c
× ~E (36)

where the fact that ṽ
c
� 1 and B � E does not guarantee that

~̃v
c
× ~E � ~B. Now, the

Maxwell equation ~∇ × ~E + 1
c
∂t ~B = 0 indicates that a time varying magnetic field also

induces an electric field. Then, a transformation of the type ~E ′ = ~E, tells us that the

electric field in both frames coincide, therefore, there is no electric field induced by a time

varying magnetic field and this suggests the Maxwell equation ~∇ × ~E + 1
c
∂t ~B = 0 must

be replaced by ~∇ × ~E = 0, which is imposed by hand. Then, under the assumptions of

the electric limit one supposes the following Galilean form for the Maxwell equations

~∇× ~E = 0 ~∇ · ~B = 0 ~∇ · ~E = 4πρ ~∇× ~B − 1

c
∂τ ~E =

4π

c
~j

which is invariant by the transformation of the four-current and the electric and magnetic

fields given in (34, 35, 36).

• The magnetic limit

In the case of the magnetic limit the assumption that ṽ/c � 1, cρ � |~j| gives for the

components of the four-current (24, 25) the transformation

ρ′ = ρ− 1

c2
~̃v ·~j, ~j ′ = ~j . (37)

12



Now, when E � B a similar development as the one used in the electric case leads us to

the following transformation

~E ′ = ~E +
1

c
~̃v × ~B

(38)
~B′ = ~B .

Here, it is the fact that ~B′ = ~B that forces us to replace the Maxwell equation ~∇× ~B −
1
c
∂t ~E = 4π

c
~j by ~∇× ~B = 4π

c
~j. The Galilean form of the Maxwell equations in the magnetic

limit is then

~∇× ~E +
1

c
∂t ~B = 0 ~∇ · ~B = 0 ~∇ · ~E = 4πρ ~∇× ~B =

4π

c
~j

which is invariant under the transformations of the four-current and the fields given in

equations (37, 38).

5 The Galilean limit

Special relativity is based on the Lorentz transformation (16). In the limit case when

c→∞ it assumes the form {
~x ′ = ~x− ~̃vt
t′ = t

(39)

which differs from the form we have written for the Galilei transformation (8) in the role

played by the absolute time as time variable, which is not identified with t = t′, and also

in the difference it exists between ~v and ~̃v (see (14)).

In our work, we take the GLT (13) as the basic transformation and we seek the

conditions under which the Galilei transformation (8) arises as the limit case. First, we

notice that for any arbitrary choice for a(v), equation (14) allows us to express a(v) in

terms of ṽ as

a =
1√

1− ṽ2

c2

= 1 +
1

2

ṽ2

c2
+ . . . (40)

therefore, since a(ṽ) assumes a fixed form as a function on ṽ it is convenient to set the

Galilean limit in terms of a condition on a(ṽ). Then, in the Galilean limit we assume that

13



ṽ
c
� 1, or more precisely that ṽ2

c2
→ 0. In this limit we obtain

t′ = at−
√
a2 − 1

1

vc
~x · ~v =

(
1 +

1

2

ṽ2

c2
+ . . .

)(
t− ṽ2

c2
~x · ~̃v + . . .

)
' t

~x ′ = ~x−

(
− 1

2
ṽ2

c2
+ . . .

)(
1 + 1

2
ṽ2

c2
+ . . .

)
(
ṽ2

c2
+ . . .

)
c2

~x · ~̃v ~̃v −
(

1 +
1

2

ṽ2

c2
+ . . .

)
t~̃v

' ~x− ~̃vt

τ = (1− a)
1

v2
~x · ~v +

√
a2 − 1

c

v
t =

(
− 1

2
ṽ2

c2
+ . . .

)(
1 + 1

2
ṽ2

c2
+ . . .

)
(
ṽ
c

+ . . .
)
c

1

v
~x · ~̃v +

ṽ

v
t

' ṽ

v
t .

In order to have τ = t we must assume that in the Galilean limit

ṽ ' v . (41)

6 Defining a natural constant

Let S and S ′ be two inertial frames moving with relative velocity ~v . We wish to define

a natural constant associated to each frame, which plays the similar role as the speed of

light of the special relativity. Then, let us write down expressions for the light ray velocity

as measured by considering derivatives with respect to the absolute time τ . Let ~xS′ and

~xS denote the position of a point in the light front as seen by the frames S, S ′. According

to the Galilei relativity we write ~xS′ = ~xS − ~vτ . Then,

~cS′ = ~cS − ~v (42)

where we have denoted ~cS = d~xS
dτ

, and ~cS′ =
d~xS′
dτ

. But, developing
d~xS′
dτ

=
d~xS′
dt′

dt′

dτ
and

d~xS
dτ

= d~xS
dt

dt
dτ

, and using (12) we obtain

~cS′ =
~c ′√

a2 − 1 c
v
− (1− a)~c

′·~v
v2

, ~cS =
~c√

a2 − 1 c
v

+ (1− a)~c·~v
v2

, (43)

and replacing these values in (42) we have

~c ′ =
~c−
√
a2 − 1 c

v
~v − (1− a)~c·~v

v2
~v

a−
√
a2 − 1~c·~v

cv

. (44)

If we use (14) we are able to rewrite this last expression in terms of ~̃v = d~x
dt

and we end

up with

~c ′ =
~c− γ~̃v − (1− γ)~c·

~̃v
ṽ2
~̃v

γ
(

1− ~c·~̃v
c2

)
14



that is the ordinary velocity transformation for the special relativity. We obtain that

c′ = c, as expected. Taking the Galilean limit (43) we obtain

cS′ = cS = c . (45)

7 Galilean electrodynamics

7.1 The Galilean description of space-time

Given a reference frame S we describe space-time by means of two coordinate systems,

which we call the Galilei and the Lorentz systems. These systems are endowed with

coordinates that we denote respectively by

Xµ
G ≡ (X0

G, X
i
G) := (cSτ, ~x), Xµ

L ≡ (X0
L, X

i
L) := (ct, ~x) (46)

where cS and c refer to the speed of light defined by considering derivatives with respect

to the absolute time or the local time. Both quantities, cS, c, are considered here as mere

factors that allow us to have all coordinates Xµ with the same dimension. In particular,

as we have seen in (45), in the Galilean limit we have cS = cS′ = c.

The relation between these two systems is established in such a way that given another

frame S ′ endowed with Galilei and Lorentz coordinates denoted by

X ′µG ≡ (X ′0G , X
′i
G) := (cS′τ, ~x ′), X ′µL ≡ (X ′0L , X

′i
L) := (ct′, ~x ′) (47)

with S ′ moving with velocity ~v relative to S we have the following diagram commutative

(X0
G, X

i
G) := (cSτ, ~x)

h
��

G~v // (X ′0G , X
′i
G) := (cS′τ ′, ~x ′)

h′

��
(X0

L, X
i
L) := (ct, ~x)

L~v // (X ′0L , X
′i
L) := (ct′, ~x ′)

(48)

where G~v is the Galilei transformation

Xµ
G → X ′µG := G~vX

µ
G :

{
1
cS′
X ′0G = 1

cS
X0
G

~X ′G = ~XG − 1
cS
X0
G~v

(49)

and L~v is the generalized Lorentz transformation (13)

Xµ
L → X ′µL := L~vX

µ
L :

{
X ′0L = aX0

L −
√
a2 − 1 1

v
~XL · ~v

~X ′L = ~XL − (1− a) 1
v2

~XL · ~v ~v −
√
a2 − 1 1

v
X0
L~v .

(50)
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Here, as we see from the definition of the absolute time (12), for the diagram (48) to be

commutative we must set h := h~v, h
′ := h~v ′ = h−~v, with h~v, h~v ′ given by

Xµ
G → Xµ

L := h~vX
µ
G :

{
X0
L = v√

a2v−1

{
1
cS
X0
G − (1− av) 1

v2
~XG · ~v

}
~XL = ~XG

(51)

X ′µG → X ′µL := h~v ′X ′µG :

{
X ′0L = v′√

a2
v′−1

{
1
cS′
X ′0G − (1− av′) 1

v′2
~X ′G · ~v ′

}
~X ′L = ~X ′G .

(52)

We then have

h−~v ◦G~v = L~v ◦ h~v

or equivalently

L~v = h−~v ◦G~v ◦ h−1~v . (53)

In this form, we are able to see the generalized Lorentz transformation L~v as induced by

the Galilei transformation G~v through the h′s transformations given in (51, 52). We will

now establish the transformation properties that arises from the use of one or another of

those systems taking as our starting point equation (51).

In the Lorentz system let FLµν and FµνL be the electromagnetic field strengths with ~E

and ~B given as in (3). In the Galilei system we introduce the corresponding field strengths

FGµν , F
µν
G by the relations

FµνG =
∂Xµ

G

∂Xα
L

∂Xν
G

∂Xβ
L

FαβL , FGµν =
∂Xα

L

∂Xµ
G

∂Xβ
L

∂Xν
G

FLαβ

whose components are

F0i
G = −

√
a2 − 1

cS
v
ELi + (1− a)

cS
v2

(~v × ~BL)i (54)

F ijG = −εijkBLk (55)

FG0i =
1√

a2 − 1

v

cS
ELi (56)

FGij = − (1− a)√
a2 − 1

1

v
(viELj − vjELi)− εijkBLk . (57)

Contrarily to the Lorentzian case, where the electric and the magnetic fields ~E, ~B could be

both accommodated (except for a sign) as components of either (F0i
L ,F

ij
L ) or (FL0i,FLij),

here we have F0i
G 6= −FG0i, F ijG 6= FGij and this doesn’t provide a unique way to identify

the Galilean counterpart of the electric and magnetic fields as it was done in (3). In

our treatment, is this aspect that determines the existence of the electric and magnetic

models for the Galilei electrodynamics.
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In the Lorentz system the contravariant four-current is defined as JµL ≡ (J0
L, J

i
L) :=

(cρL,~jL), and we denote the corresponding Galilean contravariant four-current as JµG ≡
(J0
G, J

i
G) ≡ (cSρG,~jG), which is defined as

JµG :=
∂Xµ

G

∂Xα
L

JαL (58)

and whose components are

ρG =
√
a2 − 1

c

v
ρL + (1− a)

1

v2
~v ·~jL

(59)
~jG = ~jL .

In the same Lorentz system the covariant four-current is defined as JLµ ≡ (JL0, JLi) :=

(cρL,−~jL), and we denote the corresponding covariant four-current in the Galilei system

as JGµ ≡ (JG0, JGi) := (cSρG,−~jG) which is defined as

JGµ :=
∂Xα

L

∂Xµ
G

JLα (60)

and whose components are

ρG =
1√

a2 − 1

vc

c2S
ρL

(61)

~jG =
(1− a)√
a2 − 1

c

v
ρL~v +~jL .

As we will see, the identification of ~E, ~B in terms of the components of the contravariant

tensor FµνG and the use of the contravariant four-current JµG will allow us to define the

so-called electric limit, while the identification of ~E, ~B with the covariant tensor FGµν
and the use of the covariant four-current JGµ will produce the magnetic limit.

All these expressions (54, 55, 56, 57, 59, 61) are written relative to the same frame S

and relate Galilean quantities ~EG, ~BG, ρG,~jG with the corresponding Lorentzian quantities
~EL, ~BL, ρL,~jL and the velocity ~v, a feature that lead us to extend to dynamical quantities

such as the Galilean fields the same conjecture made in [11], where the description of

events depend on the state of motion of the frame.

In analogy with the commutative diagram (48) relating the coordinates of events, we

also have a commutative diagram relating the fields and the four-current as represented

schematically below

( ~EG, ~BG, ρG,~jG, ~v) = KG

��

Galilei // K′G = ( ~E ′G,
~B′G, ρ

′
G,~j

′
G, ~v

′)

��

( ~EL, ~BL, ρL,~jL, ~v) = KL Lorentz // K′L = ( ~E ′L,
~B′L, ρ

′
L,~j

′
L, ~v

′)
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where the vertical arrows are the analogous of the transformations (51, 52) and refer to

the transformations connecting the Galilean fields and the Galilean four-current with the

corresponding Lorentzian fields and the Lorentzian 4-current.

7.2 The covariant model and the magnetic limit

7.2.1 The covariant model

This model is defined by taking the covariant tensor FGµν and the covariant four-current

JGµ as the main element of analysis. Here, we define the electric and magnetic fields as

( ~EG; ~BG) := (FG0i;−
1

2
εijkFGjk) . (62)

From (56, 57) we have

~EG =
1√

a2 − 1

v

cS
~EL

(63)
~BG =

(1− a)√
a2 − 1

1

v
~v × ~EL + ~BL

and the covariant four-current JGµ = (cρG,−~jG) is given by (61).

The transformation of the Galilean fields and the four-current is obtained from

F ′Gµν =
∂Xα

G

∂X ′µG

∂Xβ
G

∂X ′νG
FGαβ

(64)
J ′Gµ =

∂Xα
G

∂X ′µG
JGα ,

which gives  ~E ′G = cS
cS′
~EG + 1

cS′
~v × ~BG

~B′G = ~BG

(65)

 ρ′G =
c2S
c2
S′
ρG − 1

c2
S′
~v ·~jG

~j ′G = ~jG .
(66)

From (63), expressing ~EL, ~BL in terms of ~EG, ~BG, and from (61) expressing ρL, ~jL in

terms of ρG,~jG and replacing them all in (4) we obtain the Maxwell’s equations in the
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Galilei system

~∇G × ~EG +
1

cS
∂τ ~BG = 0

~∇G · ~BG = 0
(67)

~∇G · ~EG + (1− a)
1

v2
~v · ∂τ ~EG = 4π

cS
c
ρG

~∇G × ~BG + 2(1− a)
cS
v2
∂τ ~EG + (1− a)

1

v2
(~v × ∂τ ~BG) +

+(1− a)
cS
v2

(~v · ~∇G) ~EG =
4π

c
~jG .

The equations shown in (67) assume an awkward form due to the presence of the relative

velocity ~v between the frames S, S ′, which originates from the fact that the transformation

h given in (51) (and that was employed to derive relations (67)) is given in terms of ~v.

This situation is somehow similar to the relation involving t, ~x, and τ shown in (12), which

also contains the relative velocity. However, the confusion is only apparent if we recall

that equation (67) represents the same Maxwell equations, the difference in form arises

because they are expressed relative to the Galilei system of coordinates. Here, observing

the form of the equations in the Galilei system we can rightly say that the description

of classical electrodynamics is simpler and more meaningful when written in the Lorentz

system, however, as we will see in the next section the magnetic model of the Galilei

electrodynamics arises only when we apply the Galilean limit on the equations (67).

7.2.2 The magnetic limit

The magnetic limit consists on taking the Galilean limit shown in section 5 for the ex-

pansion of a, ṽ
c
� 1 (which implies ṽ2

c2
→ 0), together with cρG � |~jG| and | ~EG| � | ~BG|.

In this limit equations (67) become

~∇G × ~EG +
1

c
∂τ ~BG = 0

~∇G · ~BG = 0
(68)

~∇G · ~EG = 4πρG

~∇G × ~BG =
4π

c
~jG

and the corresponding form of the transformations (65, 66) become

~B′G = ~BG
~E ′G = ~EG +

1

c
~v × ~BG ρ′G = ρG −

1

c2
~v ·~jG ~j′G = ~jG (69)

where we have used that in the Galilean limit cS → c and ṽ → v. The transformation

ρ′G = ρG − 1
c2
~v · ~jG may be justified as follows. We write ρ′G = ρG

(
1 − ~v

c
· ~jG
cρG

)
, then we

have jG
cρG
� 1 and v

c
� 1, therefore we cannot neglect ~v

c
· ~jG
cρG

in the expression of ρ′G.
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Transformations (69) leave equations (68) invariant and correspond to the same equa-

tions obtained in the so-called magnetic limit of [1].

7.2.3 The conservation of the four-current

Let us consider the conservation of the four-current JLµ,

∂tρL + ~∇L ·~jL = 0

which is equivalent to

2(a− 1)
c2S
v2
∂τρG + (1− a)

vi
v2
∂τjGi + ∂GijGi − (1− a)

c2S
v2
vi∂GiρG = 0 . (70)

In the magnetic limit we have

2(a− 1)
c2S
v2
∂τρG ' ∂τρG, (1− a)

vi
v2
∂τjGi ' 0, (1− a)

c2S
v2
vi∂GiρG '

1

2
vi∂GiρG

where the last term 1
2
vi∂GiρG may be neglected when compared to the term ∂GijGi since

csρG � jG, therefore we obtain equation (70) as

∂τρG + ~∇ ·~jG = 0 .

7.3 The contravariant model and the electric limit

7.3.1 The contravariant model

This model is defined by taking the contravariant tensor FµνG and the contravariant four-

current JµG as the main elements of analysis. We define

( ~EG; ~BG) := (−F0i
G ;−1

2
εijkF jkG ) . (71)

From (54) and (55) we have

~EG :=
√
a2 − 1

cS
v
~EL − (1− a)

cS
v2

(~v × ~BL)
(72)

~BG := ~BL .

The four-current in the Lorentz system is JµL ≡ (J0
L, J

i
L) := (cρL,~jL), and we denote the

corresponding Galilean contravariant four-current as JµG ≡ (J0
G, J

i
G) ≡ (cρG,~jG), which is

defined as

JµG :=
∂Xµ

G

∂Xα
L

JαL

and whose components are given by (59).
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The transformation of the Galilean fields and the four-current is now obtained from

F ′µνG =
∂X ′µG
∂Xα

G

∂X ′νG

∂Xβ
G

FαβG
(73)

J ′µG =
∂X ′µG
∂Xα

G

JαG

which gives  ~E ′G =
cS′
cS
~EG

~B′G = ~BG − 1
cS
~v × ~EG

(74)

 ρ′G = ρG

~j ′G = ~jG − ~vρG .
(75)

In the Galilei system the Maxwell’s equations become

~∇G × ~EG − 2(1− a)
cS
v2
∂τ ~BG − (1− a)

cS
v2

(~v · ~∇G) ~BG +

+(1− a)
1

v2
~v × ∂τ ~EG = 0

~∇G · ~BG + (1− a)
1

v2
~v · ∂τ ~BG = 0 (76)

~∇G · ~EG = 4π
cS
c
ρG

~∇G × ~BG −
1

cS
∂τ ~EG =

4π

c
~jG

7.3.2 The electric limit

The electric limit consists on taking the same Galilean limit shown in section 5 for the

expansion of a, ṽ
c
� 1 (which implies ṽ2

c2
→ 0), together with |~jG| � cρG and | ~BG| � | ~EG|.

In this limit equations (76) become

~∇G × ~EG = 0

~∇G · ~BG = 0
(77)

~∇G · ~EG = 4πρG

~∇G × ~BG −
1

c
∂τ ~EG =

4π

c
~jG

and the transformations of the fields and the four-current become

~E ′G = ~EG ~B′G = ~BG −
1

c
~v × ~EG ρ′G = ρG ~j′G = ~jG − ~vρG . (78)

It is straightforward to check that equations (77) are left invariant by the transformations

(78). Together they correspond to the electric limit of [1].
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7.3.3 The conservation of the four-current

Let us consider the conservation of the Lorentzian four-current JµL,

∂tρG + ~∇ ·~jL = 0

which is equivalent to

∂τρG + ~∇G ·~jG = 0 .

Now, contrarily to the magnetic limit, the conservation of the Galilean four-current follows

directly from their counterpart conserved Lorentzian four-current, with no approximation

required.

7.4 The general Galilean model

7.4.1 The basic equations

Our third model combines some aspects of the two previous ones. Here, we consider

electrodynamics in a medium and introduce the fields ( ~EG, ~BG, ~DG, ~HG) defined in terms

of the Galilean fields strengths FGµν (56, 57), and Hµν
G

H0i
G = −

√
a2 − 1

cS
v
DLi + (1− a)

cS
v2

(~v × ~HL)i
(79)

Hij
G = −εijkHLk

as follows

EGi := FG0i

BGi := −1

2
εijkFGjk

(80)
DGi := −H0i

G

HGi := −1

2
εijkHjk

G .

The four-current in this general model follows the same definition shown in equations (58,

59). We obtain explicitly that

~EG =
1√

a2 − 1

v

cS
~EL

~BG = ~BL +
(1− a)√
a2 − 1

1

v
~v × ~EL

(81)
~DG =

√
a2 − 1

cS
v
~DL − (1− a)

cS
v2
~v × ~HL

~HG = ~HL

ρG =
√
a2 − 1

c

v
ρL + (1− a)

1

v2
~v ·~jL

~jG = ~jL .
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The transformation of the fields and the four-current follow the same pattern as before

and assume the form 

~E ′G = cS
cS′
~EG + 1

cS′
~v × ~BG

~B′G = ~BG

~D′G =
cS′
cS
~DG

~H ′G = ~HG − 1
cS
~v × ~DG

(82)

{
ρ′G = ρG
~j ′G = ~jG − ~vρG .

(83)

In the Galilei system the Maxwell’s equations (6) become

~∇G × ~EG +
1

cS
∂τ ~BG = 0

~∇G · ~BG = 0
(84)

~∇G · ~DG = 4π
cS
c
ρG

~∇G × ~HG −
1

cS
∂τ ~DG =

4π

c
~jG

and they assume the same form as the Maxwell’s equation in the Lorentz system. Con-

trarily to what we have seen in the covariant and contravariant models, this form of the

Maxwell equations in the Galilei system shown in (84) are invariant under the Galilei

transformations of the fields and the four-current (82, 83).

We also notice from the non-homogeneous equations in (84) that the conservation of

the Galilean four-current has the form

cS
c
∂τρG + ~∇G ·~jG = 0 . (85)

7.4.2 The constitutive relations

Maxwell’s equations and the constitutive relations for the Galilean fields can be thought

as arising from the formulation of electrodynamics in a Riemannian manifold as follows.

According to [12], [13], in a Riemannian manifold Maxwell’s equations assume the

form

Fαβ;γ + Fβγ;α + Fγα;β = 0, Hαβ
;β = −4π

c
Jα

where

Hαβ = gαµgβνFµν (86)
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provides the constitutive relation, which relates the geometry of the spacetime, implicit

in the metric gαβ, with the fields present in the electromagnetic tensor Fαβ. Here, if we

take spacetime having a Lorentzian metric such that

ηµνL =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


we have the corresponding object

ηµνG =
∂Xµ

G

∂Xα
L

∂Xν
G

∂xβL
ηαβL =

(
2c2S
v2

(a− 1) cS
v2

(a− 1)vi
cS
v2

(a− 1)vi −δij

)
. (87)

Assuming gαβ = ηαβG in (86) we obtain the constitutive relations for the Galilean fields

~DG = (a− 1)
cS
v2
~v × ~BG + (1− a)2

c2S
v4

(~v · ~EG)~v + 2(a− 1)
c2S
v2
~EG

(88)
~HG = ~BG + (a− 1)

cS
v2
~v × ~EG .

Taking the Galilean limit in (88) we obtain

~DG = ~EG +
1

2c
~v × ~BG

~HG = ~BG +
1

2c
~v × ~EG .

Using the constitutive relations in the non-homogeneous equations of (84) we obtain

~∇G · ~DG = 4π
cS
c
ρG −→ ~∇G · ~EG = 4πρGeq

(89)
~∇G × ~HG −

1

cS
∂τ ~DG =

4π

c
~jG −→ ~∇G × ~BG −

1

c
∂τ ~EG =

4π

c
~jGeq

where

ρGeq = ρG +
1

8πc
~v · (~∇G × ~BG)

~jGeq = ~jG −
1

2
ρG~v +

1

8π
(~v · ~∇G) ~EG .

Let us use the second non-homogeneous equation given in (89) to write ~∇G × ~BG =
1
c
∂τ ~EG + 4π

c
~jGeq. Then we may rewrite ρGeq = ρG + 1

8πc2
(~v · ∂τ ~E + 4π~jGeq). Since we are

considering the Galilean limit where 1/c2 → 0 we have ρGeq = ρG. Then, in the Galilean
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limit and using the constitutive relations (88) the Maxwell’s equations assume the form
~∇G × ~EG + 1

c
∂τ ~BG = 0

~∇G · ~BG = 0
~∇G · ~EG = 4πρGeq
~∇G × ~BG − 1

c
∂τ ~EG = 4π

c
~jGeq

(90)

{
ρGeq = ρG
~jGeq = ~jG − 1

2
ρG~v + 1

8π
(~v · ~∇G) ~EG .

(91)

Here, the conservation of the four-current has the form

∂τρGeq + ~∇G ·~jGeq = 0 (92)

and since the form of ~jGeq carries explicitly the electric field we must check if this equation

(92) doesn’t pose any additional restriction on the field. It is straightforward to check

that neglecting terms of the order 1/c2 we have ensured that

∂τρG + ~∇G ·~jG = 0⇒ ∂τρGeq + ~∇G ·~jGeq = 0

therefore there is no additional condition on the electric and magnetic field. Physically,

we assume in this Galilean approximation that we have established the form of jGeq from

the medium properties.

Now, in the Galilean limit the transformations of the fields and the four-current reads

as 

~E ′G = ~EG + 1
c
~v × ~BG

~B′G = ~BG

~D′G = ~DG

~H ′G = ~HG − 1
c
~v × ~DG{

ρ′G = ρG

~j′G = ~jG − ~vρG

and it keeps invariant the Galilean form of the Maxwell’s equations (90) and the conser-

vation equation (92).

7.5 Another derivation of the constitutive relations

Now, in order to illustrate the validity of the generalized Lorentz transformations for

the electromagnetic fields given in (17), (18) let us obtain the same constitutive rela-

tions between the fields through the standard procedure. Let us assume the general case
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of a moving medium at rest relative to the frame S ′. Then, we assume the following

constitutive relations [8]

~D′L = ε ~E ′L,
~B′L = µ ~H ′L .

Using (17) we obtain from ~D′L = ε ~E ′L that

a ~DL + (1− a)
1

v2
~v · ~DL ~v +

√
a2 − 1

1

v
~v × ~HL =

= ε
{
a ~EL + (1− a)

1

v2
~v · ~EL ~v +

√
a2 − 1

1

v
~v × ~BL

}
(93)

and taking the scalar product with ~v we get ~v · ~DL = ε~v · ~EL, which replacing back in

(93) let us with

a ~DL +
√
a2 − 1

1

v
~v × ~HL = εa ~EL + ε

√
a2 − 1

1

v
~v × ~BL . (94)

Similarly, using (18) we obtain from ~B′L = µ ~H ′L that

a ~BL + (1− a)
1

v2
~v · ~BL ~v −

√
a2 − 1

1

v
~v × ~EL =

= µ
{
a ~HL + (1− a)

1

v2
~v · ~HL ~v −

√
a2 − 1

1

v
~v × ~DL

}
(95)

and taking the scalar product with ~v it gives ~v · ~BL = µ~v · ~HL, which replacing back in

(95) gives

a ~BL −
√
a2 − 1

1

v
~v × ~EL = µa ~HL − µ

√
a2 − 1

1

v
~v × ~DL . (96)

Now, taking the vector product with ~v we obtain from (96) that

~v × ~HL =
1

µ
~v × ~BL +

(
ε− 1

µ

)√a2 − 1

a

1

v
(~v · ~EL)~v +

√
a2 − 1

a

v

µ
~EL −

√
a2 − 1

a
v ~DL

and replacing this expression for ~v× ~HL back in (94) and using (~v · ~EL)~v = ~v× (~v× ~EL) +

v2 ~EL we get

~DL = ε ~EL +
(
ε− 1

µ

)
a
√
a2 − 1

1

v
~v × ~BL −

(
ε− 1

µ

)
(a2 − 1)

1

v2
~v × (~v × ~EL) . (97)

In a similar way, taking the vector product of ~v with (94) we obtain

~v × ~EL =
1

ε
~v × ~DL −

(
µ− 1

ε

)√a2 − 1

a

1

v
(~v · ~HL)~v − 1

ε

√
a2 − 1

a
v ~HL +

√
a2 − 1

a
v ~BL

and replacing this expression for ~v × ~EL into (96) we obtain

µa
(

1− (a2 − 1)

a2µε

)
~HL =

1

a
~BL +

(
µ− 1

ε

)√a2 − 1

av

{
a~v × ~DL +

√
a2 − 1

v
(~v · ~HL)~v

}
. (98)
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Again, taking the vector product of ~v with (94) and using that ~v× (~v× ~HL) = (~v · ~HL)~v−
v2 ~HL we obtain that

a~v× ~DL+
√
a2 − 1

1

v
(~v· ~HL)~v =

√
a2 − 1v ~HL+εa~v× ~EL+ε

√
a2 − 1

1

v
(~v· ~BL)~v−ε

√
a2 − 1v ~BL

that replacing on the rhs of (98) and using (~v · ~BL)~v = ~v × (~v × ~BL) + v2 ~BL let us with

~HL =
1

µ
~BL +

(µε− 1)

µ
a
√
a2 − 1

1

v
~v × ~EL +

(µε− 1)

µ
(a2 − 1)

1

v2
~v × (~v × ~BL) . (99)

Finally, using (14) we convert expressions (97, 99) into

~DL = ε ~EL +
(
ε− 1

µ

)γ2
c
~̃v × ~BL −

(
ε− 1

µ

)γ2
c2
~̃v × (~̃v × ~EL)

(100)

~HL =
1

µ
~BL + γ2

(
ε− 1

µ

)[~̃v
c
× ~EL +

~̃v

c
×
(~̃v
c
× ~BL

)]
that are the expected expressions in frame S. Now for a medium at rest relative to frame

S and considering the vacuum, we have ε = 1, µ = 1, and we get the constitutive relations

under the form ~DL = ~EL and ~HL = ~BL, which produces the corresponding relations

among the Galilean fields

~DG = (a− 1)
cS
v2
~v × ~BG + (1− a)2

c2S
v4

(~v · ~EG)~v + 2(a− 1)
c2S
v2
~EG

~HG = ~BG + (a− 1)
cS
v2
~v × ~EG ,

which agree with the form previously obtained in (88).

8 Conclusion

In our work we obtained the Galilei electrodynamics of Lévy Le Blond and Le Bellac

by employing a kind of tensor calculus defined from the relation between two coordinate

systems for spacetime, the Galilei and the Lorentz systems, defined in (46). Here, we

considered the standard Maxwell electrodynamics as defined relative to the Lorentz system

by means of the tensor FLµν , or FµνL . While in the standard Maxwell electrodynamics the

relation between the covariant and contravariant components of these tensors corresponds

at most to an overall minus sign that doesn’t change the form of the Maxwell’s equations,

we have seen there is a considerable difference when we set the Galilei electrodynamics

since the theory that emerges when we take the Galilean limit will depend whether we use

the covariant tensor FGµν or the contravariant tensor FµνG . This makes a clear distinction

why there are two Galilean models for the Maxwell electrodynamics, each model arising

27



due to the covariant or contravariant nature of the Galilean electromagnetic tensor we

adopt.

The general Galilean model of section 7.4 mixes both constructions as it accommodates

the electric and the magnetics fields ~EG, ~BG as components of a covariant tensor FGµν ,
while the electric and the magnetic excitations ~DG, ~HG are accommodated as components

of a contravariant tensor Hµν
G . The remarkable aspect of this third model is that it

produces the same set of equations for the Galilean and the Lorentzian fields, this time

with the absolute time replacing the local time in the Galilei electrodynamics. Also, in

this model the form of the constitutive relations we obtained for the Galilei fields shown

in section 7.4.2 follows the standard formulation of electrodynamics in a Riemannian

manifold, which has agreed with the usual formulation shown in section 7.5. Then, the

transformed Lorentzian metric expressed in the Galilei system ηµνG given in (87) plays an

essential role. It is still not clear the meaning of this metric nµνG in the four-dimensional

space with coordinates Xµ
G = (x0G, ~xG) = (cSτ, ~x), since it doesn’t seem to reveal an

euclidean geometry for the space part (x1G, x
2
G, x

3
G). Perhaps their limit case when 1

c2
→ 0

may be of some interest, at least on trying to elucidate the meaning of the speed v that

could signalize the existence of a preferred reference frame, or something close to the

formulation of an ether as proposed by Dirac [14].

Finally, in the scheme we have presented we still have to analyze the role played by

the absolute time τ , and the local time t in establishing the Galilei group as the limit of

the Poincaré group when c→∞.
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liana Cabral Raposo, Teodora Pereira, Ying Chen, Rina Chen Carvalho and to Karina de

Carvalho Giglio for so much that was given. Alexandre Lyra thanks Eliana N. Lyra de

Oliveira for the permanent support.

This work was done in honor of IC XC, MP ΘΥ.

References
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