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We investigate a nonlinear realization of the Lorentz transformation defined in 4-dimensional spacetime, and the corresponding
invariant interval. This new interval is not a quadratic form in the standard Minkowski spacetime, then we search for a description
where it becomes a quadratic form in an infinite dimensional vector space. In this extended space, we show how to generate two
classes of nonlinear transformations, which form a group and interpret the non-linear transformation as compatible relations
between atlas of a Lyra manifold.

1. Introduction

Spacetime structure is characterized at the classical level
by the four-dimensional interval I = ημνxμxν (or dI =
ημνdxμdxν when we consider spacetime modelled as a mani-
fold instead of a vector space) and the corresponding Lorentz
transformation xμ → x′μ = Λ

μ
νxν. Since no experiment

can probe spacetime at very small distances, it is possible
to consider that at these scales spacetime is described by a
modified interval Iq, and the Lorentz invariance is broken
in the sense of not leaving Iq invariant. This conjecture was
considered by some authors in several different contexts (see
[1–3] and references therein).

In our work, we investigate a model proposed originally
by Albano and Dresden [4–7] where the standard interval I
and the Lorentz transformation are replaced by

Iq = ημνx
μxν + ̂f , (1)

x′μ = hΛΛ
μ
νxν. (2)

Here, ̂f is an arbitrary function depending on the ratio xμ/x0,
and hΛ is a function whose form is determined by imposing
the nonlinear transformation leaves Iq invariant.

The purpose of our work is twofold. First, to provide
a general mathematical construction for spacetime models
that are based on (1) and (2) and that include, as a particular
case, the original Albano-Dresden model. Second, to clarify
and revisit some aspects of the Albano-Dresden model,
specially those concerning the interpretation of the nonlinear
transformation. Like Albano and Dresden, we present no
extensive analysis on the possible quantum effects that could
justify a change in the spacetime interval, for example, I →
Iq, as proposed in (1).

Our mathematical construction is based on the attempt
to interpret Iq as a quadratic form in a certain space. Due to
the arbitrariness of f , it is evident that Iq is not a quadratic
form in ordinary spacetime. The solution is to consider a
family of vector spaces {Ex}x∈M and to introduce sections
s ∈ ∏

x∈MEx, that is, s : U ⊆ M → ∪x∈MEx, in
terms of which we define an extended space M ⊕ ∏

x∈MEx
where Iq is a quadratic form. Then, assuming the nonlinear
transformation x′ = hΛΛx and suitable transformations
for the sections we deduce, upon imposing invariance of
Iq, two forms for hΛ, one determining the original Albano-
Dresden transformation and the other a new transformation
not contemplated in their model.
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The interpretation of the nonlinear transformation
needs a careful analysis. Albano and Dresden show in
[6, 7] that by introducing new variables ξ, ξ′ as ξμ :=
xμ
√

1 + (1/x2) f (xi/x0), ξ′μ := x′μ
√

1 + (1/x′2) f (x′i/x′0) the
nonlinear transformation becomes linear, that is, ξ →
ξ′ = Λξ. Then, one can associate the violation of Lorentz
symmetry to the failure on defining the variables ξ, ξ′.
This occurs for points satisfying 1 + (1/x2) f (xi/x0) < 0
that defines a distinguished region of spacetime. However,
theoretical and observational aspects indicate there is no
preferred region like this. Therefore, it is necessary to clarify
the meaning of the nonlinear transformation in a different
way. We achieve this by treating the nonlinear transformation
as a passive transformation between charts of two compatible
atlas that are employed by two different observers. The
possibility to linearize the nonlinear transformation, that is,
to reduce it to the standard Lorentz form, is seen as an active
transformation between charts of two compatible atlas used
by the same observer. With this view, we are able to avoid
inferences on the existence of specific spacetime regions
where Lorentz violation occurs. Instead of that, we show that
the violation can be considered as an effect related to specific
choices of atlas and, therefore, it concerns the observer in
its relation to the spacetime rather than being an intrinsic
property of spacetime.

Our work is organized as follows. In Section 2 we build
an infinite dimensional vector space where we define Iq and
derive the nonlinear transformations as transformations that
leave Iq invariant. We also show that they obey a group
structure. In Section 3 we assume spacetime is endowed with
a Lyra structure and interpret the linear and the nonlinear
transformations in terms of compatible relations between
atlas used by two observers. Finally, in Section 4 we give a

heuristic interpretation to the function ̂f showing how it
arises as a consequence of the uncertainty principle in the
measurement of position. We also indicate how the shift from
linear to nonlinear Lorentz transformation may form a theo-
retical framework for the fluctuation of the spacetime metric.

Henceforth, we refer the interval Iq as the Albano-Dresden
form. The nonlinear transformation (2) is called Albano-
Dresden transformation despite the form of hΛ we consider.

2. The Nonlinear Transformation and
the Spacetime Structure

2.1. Defining the Extended Space and the Albano-Dresden
Form Iq. Let us assume spacetime is a pair (M, g) with M a
4-dimensional real vector space and g a bilinear form that is
symmetric, nondegenerate, and of rank 2. Let {e0, e1, e2, e3}
be an orthonormal basis for M in terms of which we write
g(eμ, eν) = ημν, with ημν = (−, +, +, +) or (+,−,−,−). The
associated quadratic form is written as I(x) = ημνxμxν where
x ≡ x(BA) := xB − xA will always refer to the difference
between the coordinates of two events xA = (x

μ
A) and xB =

(x
μ
B). If we consider an event xA = (x

μ
A) and write I(x) =

ημνxμxν we understand that x ≡ x(AO) := xA − xO with
xO = (0, 0, 0, 0).

Now, let Ω ≡ {Ex}x∈M be a family of real vector spaces
indexed by spacetime M. We assume Ex is 4-dimensional
with basis {θμx}. The direct product space

∏

x∈MEx consists
of maps s : M → ∪x∈MEx where s(x) ∈ Ex. Following the
notation of [8], we write s = (sx)x∈M , with sx := s(x) =
s
μ
xθμx ∈ Ex (s

μ
x ∈ R), and define the sum of elements s, s′ ∈

∏

x∈MEx as

s + s′ ≡ (sx)x∈M +
(

s′x
)

x∈M := (

sx + s′x
)

x∈M (3)

while the product of s ∈∏

x∈MEx by a scalar λ ∈ R is defined
as

λs ≡ λ(sx)x∈M := (λsx)x∈M. (4)

In this way,
∏

x∈MEx becomes a vector space. Let us consider
the elements θμ[y] := (δxyθμx)x∈M which allows us to write
s =∑

y∈M s
μ
yθμ[y]. In fact, from the sum and product by scalar

defined in
∏

x∈MEx we have

∑

y∈M
s
μ
yθμ[y] =

∑

y∈M

(

s
μ
yδxyθμx

)

x∈M =
⎛

⎝

⎛

⎝

∑

y∈M
s
μ
yδxy

⎞

⎠θμx

⎞

⎠

x∈M

=
(

s
μ
xθμx

)

x∈M = s.

(5)

We notice that s = ∑

y∈M s
μ
yθμ[y] is understood as a formal

expression that attains a rigorous meaning as a finite sum
if we consider s having finite support and, in this case, the
exterior product becomes the external direct sum ⊕x∈MEx.
(In the general case, the meaning given to s = ∑

y∈M s
μ
yθμ[y]

must be understood as similar to the same formal meaning
one gives to the expression representing a divergent series of
real numbers, or to the path integral measure Dφ.)

Consider now the exterior direct sum of M and
∏

x∈MEx,
that is, M ⊕ (

∏

x∈MEx) 	 (x, s). Henceforth, we denote (x, s)
as x ⊕ s. Let us introduce elements ẽμ := (eμ, 0), ˜θμy :=
(0, θμ[y]), in terms of each we write x⊕s = xμẽμ+

∑

y∈M s
μ
y ˜θμy .

Any finite set of the form {˜θμ1x1 , . . . , ˜θμrxr} ⊂
∏

x∈MEx is
linearly independent (with xi /= xj), and we define a bilinear
form in M ⊕∏

x∈MEx as follows:

Q
(

ẽμ, ẽν

)

= ημν, Q
(

ẽμ, ˜θμx
)

= 0,

Q
(

˜θμx, ˜θνx

)

= ημν f
2(x), Q

(

˜θμx, ˜θνy

)

= 0
(

if x /= y
)

,

(6)

with f an arbitrary nonnull real-valued function of space-
time. (The fact that in (6) we write f 2 instead of f will
become clear in Section 3.1). By linearity, we extend the
bilinear form Q to the whole space M ⊕∏

x∈MEx as follows:

Q
(

x ⊕ s, y ⊕ q) = Q
(

x, y
)

+Q
(

s, q
)

= ημνx
μyν +

∑

z,w

δzw f
2(z)ημνs

μ
zqν

w

= ημνx
μyν +

∑

z

f 2(z)ημνs
μ(z)qν(z).

(7)
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Define now a map

Δx :
∏

x∈M
Ex −→

∏

x∈M
Ex,

s −→ Δxs := s
μ
xθμ[x]

(8)

and the subset

M⊕Δ

∏

x∈M
Ex :=

⎧

⎨

⎩

(x,Δxs) ∈M ⊕
∏

x∈M
Ex : x ∈M, s ∈

∏

x∈M
Ex

⎫

⎬

⎭

.

(9)

Restricted to these elements, the bilinear form assumes the
value

Q
(

x ⊕ Δxs, y ⊕ Δyq
)

= Q
(

x, y
)

+Q
(

Δxs,Δyq
)

= ημνx
μyν + δxy f

2(x)ημνs
μ(x)qν

(

y
)

.
(10)

In particular, we obtain Iq as

Iq(x, s) := Q(x ⊕ Δxs, x ⊕ Δxs)

= ημνx
μxν + f 2(x)ημνs

μ(x)sν(x)
(11)

which leads us to identify the function ̂f of the original
Albano-Dresden transformation [4, 5] as

̂f (x) ≡ f 2(x)ημνs
μ(x)sν(x). (12)

We identify M with M⊕Δ
∏

x∈MEx|s=0 by the correspondence

M 	 x ↔ (x, 0) ∈ M⊕Δ
∏

x∈MEx|s=0. Then, I = x2 becomes

a particular case of Iq = x2 + s2 f 2 when we take s = 0.

2.2. Deriving Transformations that Leave Iq Invariant. The

analysis of the invariance of the interval Iq = x2 + ̂f must
take into account transformations of both x and s, that is,
(x, s(x)) → (x′, s′(x′)). In what follows, we analyze two types
of transformations for the sections s that will determine two
classes of nonlinear transformations.

2.2.1. Type I Transformations. Let us assume transformations
(x, s(x)) → (x′, s′(x′)) having the form

x′μ := hΛ(x)Λ
μ
νxν,

s′μ(x′) := Λ
μ
νsν(x).

(13)

Imposing invariance of Iq on M⊕Δ
∏

x∈MEx

Q(x′ ⊕ Δx′s′, x′ ⊕ Δx′s′) = Q(x ⊕ Δxs, x ⊕ Δxs),

∴ x2h2
Λ(x) + s2(x) f ′2(x′) = x2 + f 2(x)s2(x),

h2
Λ(x) = 1 +

s2(x)
x2

(

f 2(x)− f ′2(x′)
)

.

(14)

In order to be able to determine hΛ from this last equation, it
is sufficient to impose that f (x) depends on the ratio xμ/x0,
that is, f ≡ f (xμ/x0), which gives

hΛ(x, s(x)) =
√

1 +
s2(x)
x2

(

f 2(x̂)− f ′2(Λx̂)
)

, (15)

with type I transformations assuming the form

x′μ = Λ
μ
νxν

√

1 +
s2(x)
x2

(

f 2(x̂)− f ′2(Λx̂)
)

,

s′μ(x′) = Λ
μ
νsν(x),

(16)

where we have used the notation

x̂μ := xμ

x0
, (Λx̂)μ := Λ

μ
νxν

Λ0
αxα

. (17)

In order to exhibit the group structure of type I trans-
formations we consider two consecutive transformations

(x, s(x))
L(Λ(1))→ (x′, s′(x′))

L(Λ(2))→ (x′, s′′(x′′)):

x′ = hΛ(1) (x)Λ(1)x

=
√

1 +
s2(x)
x2

(

f 2(x̂)− f ′2
(

Λ(1)x̂
)

)

Λ(1)x,

s′(x′) = Λ(1)s(x),

x′′ = hΛ(2) (x
′)Λ(2)x

′

=
√

1 +
s′2(x′)
x′2

(

f ′2(x̂′)− f ′′2
(

Λ(2)x̂′
)

)

Λ(2)x
′,

s′′(x′′) = Λ(2)s
′(x′).

(18)

Using that

√

1 +
s′2(x′)
x′2

(

f ′2(x̂′)− f ′′2
(

Λ(2)x̂′
)

)

= 1
hΛ(1)(x)

√

1 +
s2(x)
x2

(

f 2(x̂)− f ′′2
(

Λ(2)Λ(1)x̂
)

)

(19)

we obtain x′′ = hΛ(2)Λ(1) (x)Λ(2)Λ(1)x, while for the sections it

is immediate that s′′(x′′) = Λ(2)Λ(1)s(x). Thus, we conclude

that L(Λ(2))◦L(Λ(1)) = L(Λ(2)Λ(1)). In particular, the inverse
of transformation (16) is written as

x = hΛ−1 (x′)Λ−1x′ =
√

1 +
s′2(x′)
x′2

(

f ′2(x̂′)− f 2(Λ−1x̂′)
)

s(x) = Λ−1s′(x′)
(20)

and one verifies that hΛ−1 (x′) = 1/hΛ(x). We have then
showed the group structure of type I transformations.
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2.2.2. Type II Transformations. These transformations are
defined by

x′μ := hΛ(x)Λ
μ
νxν,

s′μ(x′) := hΛ(x)Λ
μ
νsν(x).

(21)

Now, imposing invariance of Iq we obtain h2
Λ(x)(x2 +

s2(x) f ′2(x′)) = x2 +s2(x) f 2(x), and in order to determine hΛ
we again consider sections whose argument is x̂μ := xμ/x0,

with (Λx̂)μ := Λ
μ
νxν/Λ0

αx
α. We obtain

hΛ(x, s(x)) =
√

√

√

√

x2 + s2(x) f 2(x̂)

x2 + s2(x) f ′2(Λx̂)
(22)

and type II transformations assume the form

x′μ := Λ
μ
νxν

√

√

√

√

x2 + s2(x) f 2(x̂)

x2 + s2(x) f ′2(Λx̂)
,

s′μ(x′) := Λ
μ
νsν(x)

√

√

√

√

x2 + s2(x) f 2(x̂)

x2 + s2(x) f ′2(Λx̂)
.

(23)

From these expressions it is straightforward to check the
group structure of type II transformations.

Remarks. (1) For both type I and II transformations we
notice that f depends on the ratio xμ/x0, which has no
dimension. From the expression of Iq = x2 +s2 f 2(x̂) it is then
necessary to introduce a unit of length in s which implies the
existence of a fundamental length in the model [4, 5].

(2) s(x) ∈ Ex, s′(x′) ∈ Ex′ are vectors belonging
to different vector spaces, and each one is characterized
numerically by the components sμ(x), s′μ(x′) ∈ R. Therefore,
transformation sμ(x) → s′μ(x′) given in (16) and (23) is seen
as a transformation in the space of real maps defined on M.

(3) For a fixed f and its transformed function f ′(x′), the
nonlinear transformations of type I and II are defined only
in a restricted spacetime region [6, 7]. Therefore, the only
way to have nonlinear transformations defined through all
spacetime is to employ several functions fa : Ua ⊂ M → R
such that in the domains Va ⊆ Ua where hΛ is defined we
have ∪Va =M.

(4) If we consider s ∈ ∏

x∈MEx satisfying s2(x) = 1, type
I transformations become

x′μ = Λ
μ
νxν

√

1 +
1
x2

(

f 2(x̂)− f ′2(Λx̂)
)

(24)

that reduce to the standard form proposed originally by
Albano and Dresden [4–7]. This choice, however, is not
compatible with type II transformations as it fixes hΛ = 1.

3. Interpreting the Nonlinear Transformation

Here, we identity Ex = TxM, and spacetime becomes a
particular case of M⊕ΔΓ(TM) when we take s = 0, that is,
M ∼ M⊕ΔΓ(TM)|s=0. In order to interpret the nonlinear

transformations we assume spacetime is a Lyra manifold,
and each observer describes spacetime by choosing one
appropriate Lyra structure, perhaps among many possible
ones.

3.1. Redefining Spacetime in Terms of a Lyra Manifold.
Following [9], we define a Lyra manifold as a set M together
with A := {(Ua,ϕa, fa; xa)}a∈Ω such that

(i) {(Ua,ϕa; xa)}a∈Ω is a C∞ atlas in M,

(ii) fa : Ua → R−{0} is a C∞ map ( fa is called the gauge
function on Ua),

(iii) A is maximal.

Since a maximal atlas is an equivalence class of compat-
ible atlas, it is enough to define a Lyra manifold in terms of
an atlas satisfying conditions (i) and (ii). In this sense we say
the atlas A defines a Lyra structure for M.

Given p ∈ M, let (Ua,ϕa, fa; xa) ∈ A with p ∈ Ua.
Locally, we have ϕa(p) = xa ≡ (x

μ
a) ∈ R4 and we define

a basis for TpM as {∂/∂xμa}. Assume now there is defined a
metric on M according to

g

(

∂

∂x
μ
a

,
∂

∂xν
a

)

=agμν(xa). (25)

Introduce a new basis for TpM as { aθμp}, with

aθμp := fa(xa)
∂

∂x
μ
a

, (26)

where fa(xa) denotes fa ◦ ϕ−1
a . Then

g
(

aθμp, aθνp

)

= f 2
a (xa)agμν(xa). (27)

In this expression, gμν are the components of the metric
relative to the original basis {∂/∂xμa}, therefore it transforms
as

a1gμν

(

xa1

) = ∂xαa2

∂x
μ
a1

∂x
β
a2

∂xν
a1

a2gαβ
(

xa2

)

. (28)

From (26) and (28) we obtain that for all p ∈ Ua1 ∩Ua2

g
(

a1θμp, a1θνp

)

= f 2
a1

(

xa1

)

a1gμν

(

xa1

)⇐⇒ g
(

a2θμp, a2θνp

)

= f 2
a2

(

xa2

)

a2gμν

(

xa2

)

(29)

which shows that (28) is compatible throughout the charts.

One should also observe that relation Q(˜θμx, ˜θνx) = ημν f 2(x)
is a consequence of (27) when we take Ep ≡ TpM and
consider gμν = ημν.
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3.2. The Transformations

Definition 1 (nonlinear Lorentz transformation). Consider
extended spacetimeM⊕ΔΓ(TM), withM endowed with Lyra
structures AO := {(Ua,ϕa, fa; xa)}, AO′ := {(U ′

b,ϕ′b, f ′b ; x′b)}
relative to observers O and O′. Let the spacetime metric
(introduced in (27)) be g′μν = gμν = ημν. For every p ∈
Ua ∩ U ′

b one defines nonlinear Lorentz transformation as the
compatible relations between the charts that have the form

x
′μ
b = hΛ(xa)Λ

μ
νxν

a

=
√

√

√

1 +
s2a(xa)
x2
a

(

f 2
a (x̂a)− f

′2
b (Λx̂a)

)

Λ
μ
νxν

a, (Type I),

x
′μ
b = hΛ(xa)Λ

μ
νxν

a

=
√

√

√

√

x2
a + s2a(xa) f 2

a (x̂a)
x2
a + s2a(xa) fb′2(Λx̂a)

Λ
μ
νxν

a, (Type II).

(30)

Definition 2 (Lorentz transformation). Consider spacetime
M⊕ΔΓ(TM)|s=0, withM endowed with single Lyra structures
AO := {(M,ϕ, f ; x)}, AO′ := {(M,ϕ′, f ′; x′)} relative to
O and O′. Let the spacetime metric be g′μν = gμν = ημν.
For every p ∈ M one defines Lorentz transformations as the
compatible relations between the charts AO , AO′ that have
the form x′ = Λx.

In the case of Lorentz transformation the gauge functions
f and f ′ play no distinguished role, and we could have
assumed single differentiable atlas AO := {(M,ϕ; x)},
AO′ := {(M,ϕ′; x′)} instead of Lyra atlas.

3.3. Reducing the Nonlinear Lorentz Transformation to Its
Linear Lorentz Form. At this point, the linear and nonlinear
Lorentz transformations were set as passive transforma-
tions arising as compatible relations between atlas used by
two Lorentz-related observers corresponding to single or
multichart atlas. A natural question we must analyze is
if an observer obtains equivalent descriptions for spacetime
whether he uses single or multichart atlas. Thus, we search
for compatible atlas A2 = {(Ua,ϕa, fa; xa)} � A1 =
{(M,ϕ, f ; x)} for O, and A′

2 = {(U ′
b,ϕ′b, f ′b ; x′b)} � A′

1 =
{(M,ϕ′, f ′; x′)} for O′ such that we have (31)

.

x
ϕ′◦ϕ−1

x′ = Λx

ϕ′b◦ϕ′−1

xa

ϕ◦ϕ−1
a

ϕ′b◦ϕ−1
a

x′b = hΛΛxa

(31)

Relative to (Ua,ϕa, fa; xa) the invariant interval (11) has the
form Ia = x2

a + s2a(xa) f 2
a (x̂a), while relative to (M,ϕ; x) its

form is I = x2. Let us assume that x
μ
a = Θ(x)xμ, and that

under this transformation Ia reduces to I . Then, we obtain

Ia = Θ2x2 + s2a(xa) f 2
a (x̂a) ≡ x2, which imposes Θ2(x) = 1 −

(s2a(xa)/x2) f 2
a (x̂a). In order to obtain Θ(x) it is sufficient to

assume that the section depends on x̂a, since x̂a = x̂whenever

xa is defined. Then sa(x̂a) = sa(x̂) and we obtain Θ(x) =
√

1− (s2a(x̂)/x2) f 2
a (x̂), that is,

xμ −→ x
μ
a := xμ

√

1− s2a(x̂)
x2

f 2
a (x̂),

x′μ −→ x
′μ
b := x′μ

√

√

√

√

1−
s
′2
b

(

̂x′
)

x′2
f
′2
b

(

̂x′
)

(32)

whose inverse reads as

x
μ
a −→ xμ := x

μ
a

√

√

√

1 +
s2a(x̂a)
x2
a

f 2
a (x̂a),

x
′μ
b −→ x′μ := x

′μ
b

√

√

√

√

√1 +
s
′2
b

(

x̂′b
)

x
′2
b

f
′2
b

(

x̂′b
)

.

(33)

In order to check if these equations reduce transformations
(30) to a linear form we write

x
′μ
b =

x′μ
√

1 +
(

s
′2
b

(

x̂′b
)

/x
′2
b

)

f
′2
b

(

x̂′b
)

,

x
μ
a = xμ

√

1 +
(

s2a(x̂a)/x2
a

)

f 2
a (x̂a)

.

(34)

Then, for both type I and II transformation we have

x
′μ
b = hΛ(xa)Λ

μ
νxν

a =⇒ x′μ

= Λ
μ
νxνhΛ(xa)

√

√

√

√

√

x
′2
b + s

′2
b

(

x̂′b
)

f
′2
b

(

x̂′b
)

x2
a + s2a(x̂a) f 2

a (x̂a)
· x

2
a

x
′2
b

= Λ
μ
νxν

√

√

√

√

x
′2
b + s

′2
b

(

x̂′b
)

f
′2
b

(

x̂′b
)

x2
a + s2a(x̂a) f 2

a (x̂a)
,

(35)

and since the nonlinear transformation is built in such way
that x

′2
b + s

′2
b f

′2
b = x

′2
a + s2a f

2
a , we end up with x′μ = Λ

μ
νxν.

In the context of Lyra manifolds, local coordinates
are introduced on every Ua ⊂ M provided we have a
chart (Ua,ϕa, fa; xa). However, depending on the choice of
the sections and on the form of the gauge function, the

transformation x = xa
√

1 + (s2a(x̂a)/x2
a) f 2

a (x̂a) ≡ ϕ ◦ ϕ−1
a (xa)

may not be defined in all ϕa(Ua) ⊂ R4. Besides that,
the transformation x = ϕ ◦ ϕ−1

a (x) is C∞ only if (1 +

(s2a(x̂a)/x2
a) f 2

a (x̂a)) /= 0. Let us assume that this happens in a

domain Va ⊆ Ua. If ∪aVa =M, we restrict the original chart
(Ua,ϕa, fa; xa) to (Va,ϕa|Va , fa|Va ; xa) obtaining another atlas

A3 := {(Va,ϕa|Va , fa|Va ; xa)} that is now compatible with

A1 = {(M,ϕ, f ; x)}. Assuming the other observer also

defines an atlas A′
3 compatible with A′

1, we obtain a complete
equivalence between linear and nonlinear Lorentz transfor-
mations, the latter reducing to the Lorentz transformation by
the use of (33). If∪aVa /=M, some nonlinear transformation
may fail to reduce to the Lorentz transformation. This would
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sign a breaking of Lorentz invariance in the corresponding
domain. In our interpretation, this failure is associated
with the noncompatibility between differentiable structures,
which is quite possible to occur in R4. Its origin is related
to how observer describes spacetime, that is, it refers to the
choice of the differentiable structure, therefore it is not due to
an intrinsic property of spacetime. Albano and Dresden sug-
gest the failure on linearizing the transformation is possibly
due to quantum mechanical effects. Here, combining their
view with our interpretation, we should analyze the extent
to which quantum mechanical effects can originate changes
in the differentiable structure of spacetime. (For another
perpective on this see [10].)

4. Some Physical Insights

4.1. A Heuristic Interpretation for ̂f . The function ̂f was
interpreted by Dresden as a contribution to the classical
interval I = c2t2−�x2 due to quantum mechanics effects [4, 5].
As an example, they considered a particular situation of two
atoms in interaction and showed how the uncertainty in the
position of the atoms determines a change in the classical
interval. However, it is not clear in their analysis how the

function ̂f relates, for example, to the wave function of the
two atoms. Here, we will show how this arises.

Let us consider two events A = (tA,�xA), B = (tB,�xB)
as measured by an observer O. Event A corresponds to the
emission of a quanta by an atom at instant tA and at position
�xA. Event B corresponds to the absorption of the quanta by
another atom at instant tB and at position �xB. The 4-interval
associated to the events

I
(

tB − tA,�xB −�xA
) = c2(tA − tB)2 − ∣

∣�xA −�xB
∣

∣

2
(36)

is an invariant for any observer that is Lorentz related
to O. However, this expression assumes observer O can
determine precisely the positions of both atoms. From a
quantum mechanical perspective there is an uncertainty on
the position of each atom, therefore we must replace the term
|�xA − �xB|2 by an average value. Heuristically, let us conceive
each atom as oscillating around fixed positions, for example,

�xA and �xB, with �ξA, �ξB representing small deviations from
these values. Then, the effective position of each atom may

be written as �xA + �ξA and �xB + �ξB. Let us assume the wave
function of the system at the instant t (tA ≤ t ≤ tB) is
described by

Ψ
(

�xA,�xB; �ξA, �ξB, t
)

≡ ΨA

(

�xB −�xA; �ξA, t
)

×ΨB

(

�xB −�xA; �ξB, t
)

(37)

and normalized such that
∫

d�ξA
∣

∣

∣

∣
ΨA

(

�xB −�xA; �ξA, t
)∣

∣

∣

∣

2

= 1,

∫

d�ξB
∣

∣

∣

∣
ΨB

(

�xB −�xA; �ξB, t
)∣

∣

∣

∣

2

= 1

(38)

with all values of ξ
j
A, ξ

j
B being equally probable, that is,

∫

d�ξAξiA|ΨA|2 =
∫

d�ξBξiB|ΨB|2 = 0. (39)

Since �xA, �xB correspond to fixed positions their role on the
wave function is just of being parameters, the functional

dependence of Ψ being determined by �ξA, �ξB. This justify

the normalization of Ψ as integrals on �ξA, �ξB. Besides that,
admitting space is homogeneous and isotropic the wave
function should depend on |�xB−�xA|. Now, in the expression
for the interval (36), we replace |�xA−�xB|2 by the average value

of |(�xB + �ξB)− (�xA + �ξA)|2, that is,
∫

d�ξAd�ξBδi j
(

xiB + ξiB −
(

xiA + ξiA
))

×
(

x
j
B + ξ

j
B −

(

x
j
A + ξ

j
A

))

∣

∣

∣

∣
Ψ
(

�xA,�xB; �ξA, �ξB, t
)∣

∣

∣

∣

2

(40)

which gives

Iq
(

tB − tA,�xB −�xA
)

= I
(

tB − tA,�xB −�xA
)

− δi j
[∫

d�ξAξiAξ
j
A|ΨA|2 +

∫

d�ξBξiBξ
j
B|ΨB|2

]

(41)

with

̂f ≡ −δi j
[∫

d�ξAξiAξ
j
A|ΨA|2 +

∫

d�ξBξiBξ
j
B|ΨB|2

]

. (42)

In this expression, the function ̂f is related to the wave
function of the system, therefore, it is seen as a quantum
effect that is not present in the classical theory. Some
criticism could arise if someone inadvertently claims a

dependence of ̂f on the instant t used to calculate (40).
This would result in an interval Iq(tB − tA,�xB − �xA; t) whose
dependence on t would be meaningless. In fact, this is not
the case as there is no distinguished cause affecting the atoms
while the radiation propagates, therefore, it is reasonable
to assume that the average (40) does not depend on t or,
equivalently, that the wave function is stationary.

4.2. A Physical Interpretation for s and the Effective Metric for
Spacetime. In our model, the sections are the main elements
in the transition from ordinary spacetime M to extended
spacetime M⊕ΔΓ(TM), and the most significant aspect of
this transition is the change of the interval from I = x2

to Iq = x2 + s2 f 2. In the previous section, we showed in

a heuristic way how ̂f could be thought as related to the

deviations δ�x = �ξ in the measurement of the position �x of a
physical system. Now, as an intrinsic property of spacetime,
we axiomatize that spacetime is described by coordinates
and sections s(x), which accounts for the fluctuation of the
spacetime coordinates, for example, x → x + s when, by
any means, we wish to measure it. With this interpretation,
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ordinary spacetime M is obtained when s = 0 that physically
means the interval is I = x2 and there is no fluctuation on
the spacetime coordinates, in agreement with the classical
regime.

We can analyze other aspects brought by the sections, for
example, the possibility of interpreting the sections as the
source of an effective metric for spacetime. We consider two
cases.

4.2.1. Case 1. Let us consider local sections s : Ua ⊆ M →
TM, ∪aUa = M, that are analytic in their domain. Then, its
Taylor series around a certain x0 ∈ Ua is written as

sμ(x) = sμ(x0) + s
μ
,λ(x0)

(

xλ − xλ0
)

+
1
2
si,λτ(x0)

(

xλ − xλ0
)

(

xτ − xτ0
)

+ · · ·
(43)

with s
μ
,λ(xa) = (∂sμ(x)/∂xλ)|xa . From (11) we obtain after

collecting the terms

Iq(x ⊕ Δxs) =
[

ηλτ + ημν f
2
(

sμ(x0)sν,λτ(x0) + s
μ
,λ(x0)sν,τ(x0)

)]

× xλxτ + h(x, x0, s(x0) . . .),
(44)

where h(x, x0, s(x0) . . .) includes all non-quadratic contribu-
tions on x. The quadratic term in x plays the role of an
effective metric for spacetime M that we identify as

gλτ(x)=ηλτ+ημν f
2
(

sμ(x0)sν,λτ(x0)+s
μ
,λ(x0)sν,τ(x0)

)

. (45)

Another possibility to arrive at this metric is by considering
the embedding problem as described in [11, 12], that is, we
search for a smooth manifold (N , ĝ) with dimN ≥ dimM
and such that (M, g) is embedded into N . Lets us consider N
as an 8-dimensional manifold with local coordinates denoted
by (YA) = (Yα,Yα+4), α = 1, 2, 3, 4. Then, the problem is to
find YA = YA(xα) such that

gμν = ĝAB
∂YA

∂xμ
∂YB

∂xν
. (46)

Defining (YA(x)) := (xα, sα(x)) with s = (sα) : U → R4 an
embedding, and

(

ĝAB
) =

⎛

⎝

ηαβ 0

0 ĝαβ

⎞

⎠ (47)

with

ĝλτ(x) := 1
2
ημν f

2 ∂x
α

∂sλ
∂xβ

∂sτ

(

∂α∂β (sμsν)|x=x0

)

(48)

it is immediate to check that (46) determines (45). Then
(M, g) is seen as isometrically embedded into (N , ĝ). By an

appropriate choice of sections and of ̂f , it is possible to
obtain an effective metric that has a nonvanishing curvature
tensor.

4.2.2. Case 2. Consider now a curve joining two spacetime
points xA = x(τA), xB = x(τB). Let us identify the classical
interval as

I =
∫ τB

τA
ημν

dxμ

dτ

dxν

dτ
dτ. (49)

The quantum fluctuation Iq represents a deviation of I
that we identify in two equivalent ways. First, from the
interpretation we gave to the sections we consider that at
the quantum level there are fluctuations on the coordinates
that change the original path joining the points xA, xB to a
different path given now by

x̃μ := xμ + sμ(x) (50)

with the flat metric ημν being kept fixed, and in terms of
which we write

Iq =
∫ τB

τA
ημν

dx̃μ

dτ

dx̃ν

dτ
dτ

=
∫ τB

τA

(

ημν + ημλs
λ
,ν + ηνλs

λ
,μ + ηλτs

λ
,μs

τ
,ν

)dxμ

dτ

dxν

dτ
dτ.

(51)

Second, we assume that Iq originates from a change of the flat
metric ημν to another metric gμν with the path still given by
xμ(τ), that is,

Iq =
∫ τB

τA
gμν(x)

dxμ

dτ

dxν

dτ
dτ. (52)

These two forms being equivalent representations for Iq, they
must give the same value, therefore we must have

gμν(x) = ημν + ημλs
λ
,ν + ηνλs

λ
,μ + ηλτs

λ
,μs

τ
,ν. (53)

Here, when we identify (51) and (52) as two equivalent forms
for Iq we are implicitly assuming that the net effect of the
fluctuations of the spacetime coordinates x → x + s is to
change the flat metric to an effective metric gμν.

5. Conclusion

We investigated a particular type of nonlinear transforma-

tion and the corresponding invariant interval Iq = x2 + ̂f

( ̂f = s2 f 2). This interval was conceived as a change of the
standard spacetime interval I = x2. One natural question
that arises is on the physical principles that determine a
change like I → Iq. The original argument proposed by
Dresden [4, 5] that we revisited in Section 4.1 gives just
a partial answer since it is excessively qualitative and does
not contemplate causes other than the uncertainty principle

in the position. In our model, we build ̂f from sections
s : U ⊆ M → TM, then to answer that question we
must first give a physical interpretation for the sections.
Here, the assumption of extra structure in spacetime is not
new [13–15], for example, in his model for the ether, Dirac
[13] assumed that in spacetime there is defined a velocity
distribution vμ that is associated to the gauge field Aμ, for
example, k−1Aμ = vμ. In another direction, Caianiello et al.
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[15] assumed there is defined a field of velocities in spacetime
corresponding to the movement of test particles of mass
m. This, of course, introduces an unnecessary element in
spacetime (the test particles) and the problem is still open
if we intend to rely only on elements that are intrinsic to the
spacetime.

The nonlinear transformation also raises a question
about causality. In fact, Zeeman showed that causality
implies the usual (linear) Lorentz transformations [16].
Then, we would expect any model that incorporates nonlin-
ear transformations violates causality. However, this is not
necessarily true for the nonlinear transformations because
Zeeman’s result is verified for the spacetime M, not for the
extended spaceM⊕Γ(TM) where the nonlinear transforma-
tions were defined, therefore, Zeeman’s argument may need
some modification or not even apply.

Our investigation may be extended to the case spacetime
is a manifold. Now, the relevant spacetime structure becomes
the fundamental metric form I := ημνdxμdxν, and we are
interested in changes of I = ημνdxμdxν → Iq := ημνdxμdxν +
ημνdsμdsν. Here, the problem is to find the analogue of M ⊕
Γ(TM) and the corresponding transformations that leave Iq
invariant.

Nowadays, nonlinear transformations are being studied
intensively in the context of the Double Special Relativ-
ity (DSR) models, where the nonlinear transformation is
defined in the momenta space. A related problem in these
models is to find the corresponding coordinate transfor-
mation. In [3], it was shown that the Fock transformation
[1] was the counterpart in the coordinates of a certain
transformation in the momenta. Then, in a similar way,
it may be worth to investigate if the Albano-Dresden
transformation corresponds to a nonlinear transformation
in the momenta space of some DSR model.

In our work, the group of nonlinear transformations
of the Albano-Dresden type was realized in an infinite
dimensional spaceM⊕∏x∈MEx. The infinite dimensionality
of the realization stands for the space

∏

x∈MEx where the
sections were defined. We notice that Albano and Dresden
obtained heuristically their transformation in a finite 4-
dimensional spacetime M with no recourse to sections.
However, as we have shown at the end of Section 2, their
transformation is a particular case of type I transformations
when we take sections s satisfying s2 = 1. Due to the heuristic
approach followed by Albano and Dresden, it is not clear
the details behind the process they employed to construct
their realization. Therefore, it is not clear if other nonlinear
realization of the Lorentz transformations may be made in a
finite dimensional space, or even if other infinite dimensional
realizations are related to the same infinite dimensional space
we have employed.

Finally, it is natural to interpret the function f present
in the Albano-Dresden interval Iq = x2 + s2 f 2 as the gauge
function of a Lyra manifold. In fact, for a Lyra manifold
the gauge function is intrinsically defined in the manifold as
part of the local chart (U ,ϕ) that is then written as (U ,ϕ, f )
[9]. Charts like this were also of fundamental importance
in the interpretation of the nonlinear transformation and
its linearization in terms of compatible atlas as given in

Section 3. For a Weyl manifold, the analogue of the gauge
function becomes a map λ : M → R that appears related to
the gauge transformation of the metric [17, 18]. Then, the
role of the gauge function in Weyl and Lyra geometries are
quite different. It seems there is no impossibility to define
in the Weyl manifold intrinsic functions fi : Ui → R, or
even to use λ to introduce a new basis for TpM, repeating
the same construction that was made in Section 3 for the
Lyra manifold. However, this would extend considerably the
definition of the Weyl manifold introducing by hand extra
structure that is not typical of this kind of space.
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