The Quantum Action Principle Revisited

Marcelo Carvalho *
Universidade Federal de Santa Catarina, Departmento de Matemática Campus Universitário, Florianópolis, SC, 88040-900, Brazil
Alexandre Lyra ${ }^{\dagger}{ }^{\text {§ }}$
Universidade Federal do Rio de Janeiro, Observatório do Valongo
Rio de Janeiro, RJ, 20080-090, Brazil
§ Grupo de Estudos e Modelagem em Astrofísica e Cosmologia (GEMAC)

Abstract

We investigate the basic assumptions leading to Schwinger's quantum action principle in quantum mechanics. We present this principle in a new way that clarifies some previous developments, e.g. the derivation of the fundamental commutators among the canonical variables and the Heisenberg equation for operators. We define operators associated to the classical transformations of the Galilei group, i.e. translations, boosts, and rotations and show their commutators obey the Lie algebra of the Galilei group.

PACS: 83.65.Ca; 11.10.Ef

1 Introduction

Schwinger's quantum action principle (QAP) in quantum mechanics was first presented in [1] and followed the ideas of work originally developed in the context of relativistic quantum field theory [2]. The basic idea of the QAP consists on taking a quantum action $\mathcal{W}=\int_{t_{1}}^{t_{2}} d t L_{q}=\int_{t_{1}}^{t_{2}} d t\left(p_{i} \dot{q}_{i}-H(q, p, t)\right)$, defined in terms of operators, and to consider the boundary term that comes from the variation of the action when we consider infinitesimal variations $\delta_{0} q_{i}:=\widetilde{q}_{i}(t)-q_{i}(t), \delta_{0} p_{i}:=\widetilde{p}_{i}(t)-p_{i}(t)$ in the functional form of the canonical operators (examples of these transformations are given in section 5.1 for the cases of translations, Galilean boosts and rotations). For the action given above one obtains as

[^0]boundary term $F=p_{i} \delta_{0} q_{i}-H \delta t$, which Schwinger interpreted as the generator of unitary transformations corresponding to the freedom of changing the descrition of a quantum mechanical system. Further developments based on this interpretation of F determine the form of the fundamental commutators as well as the Heisenberg equation for operators. Despite its power on fixing several basic properties of quantum mechanical and relativistic field systems, some of the derivations of the QAP are not clear and sometimes invoke assumptions that are not contained in the QAP itself, therefore, leaving the impression the principle is incomplete.

For example, as it is shown in [1], the derivation of the canonical commutators $\left[q_{i}, p_{j}\right]=$ $i \hbar \delta_{i j},\left[q_{i}, q_{j}\right]=0,\left[p_{i}, p_{j}\right]=0$ involves the use of the QAP twice, at one time taking for action the form given above, and at another time taking for action $\mathcal{W}=\int_{t_{1}}^{t_{2}} d t L_{p}=$ $\int_{t_{1}}^{t_{2}} d t\left(\dot{p}_{i} q_{i}-H(q, p, t)\right)$. Although the difference between the two lagrangians L_{q} and L_{p} relies only on a total derivative, we cannot affirm that both actions will lead to the same physical properties. In fact, this total derivative will appear as a boundary term in the variation of the action giving a contribution to the generator F that may change the description of the system.

Another development that is not clear refers to the derivation of the Heisenberg equation for operators. As the boundary term F is obtained from the infinitesimal variation of an hermitian operator W, then F is both an hermitian and an infinitesimal operator that depends on the infinitesimal variations $\delta_{0} q_{i}, \delta_{0} p_{i}, \delta_{0} t$. Therefore, F generates an infinitesimal unitary operator $U=e^{\frac{i}{\hbar} F}$ and its inverse $U^{-1}=e^{-\frac{i}{\hbar} F}$ that, as a first order approximation in $\delta_{0} q_{i}, \delta_{0} p_{i}, \delta_{0} t$, write as $U=1+\frac{i}{\hbar} F, U^{-1}=1-\frac{i}{\hbar} F$. The QAP assumes that given an operator $K(q, p, t)$, the infinitesimal unitary operator $U=1+\frac{i}{\hbar} F$ induces a change on K as $\delta K=U K U^{-1}-K=-\frac{i}{\hbar}[K, F]$. In order to obtain the Heisenberg equation for K it is assumed additionally in [1] that $\delta K=-\left(\frac{d K}{d t}-\frac{\partial K}{\partial t}\right) \delta_{0} t$, however no proof is given this relation is true in the general case. Another delicate point is the assumption that the operator variations $\delta q_{0}, \delta p_{0}$ are functions rather than operators, an issue that led to several investigations [3]. In our approach we are able to let $\delta q_{0}, \delta p_{0}$ be operators at the cost of having extra transformations in our theory.

In our work we present a formulation of the QAP that solves the ambiguities mentioned above and follows the general idea behind Schwinger's QAP. The difference is in the choice of the action and in the type of transformations we consider that will render a different form for the boundary term. Another particular characteristic of our development is on the role played by the Hamiltonian that appears independently of the generator F. Both generators will be fundamental in defining unitary transformations in the space of states from which we will be able to determine the fundamental commutators without ambiguity and from a single action. The purpose of this work is to make a comparative study of the
hypothesis that led Schwinger to formulate his QAP and the hypothesis that we use to formulate our version of the QAP. We emphasize throughout the text where we deviate from Schwinger construction and the new features that appear. We hope this may bring a renewed interest on this subject.

Our work is organized as follows. In section 2 we review Schwinger's development of the QAP. Subsection 2.1 is devoted to the basics of unitary transformations in the space of states and observables, a necessary tool to formulate the QAP. Subsection $\mathbf{2 . 2}$ reviews Schwinger's derivation of the fundamental commutators and of the Heisenberg equation for operators. In particular, we discuss those aspects which seem incomplete and that demand assumptions besides the QAP itself. In section 3 we formulate a new version of the QAP obtaining a boundary term F that differs from the one obtained by Schwinger. We assume a consistency between composition of transformations generated by F and H, thus obtaining the equations of motion for the canonical operators. Then we analyze the structure of the transformation $\delta_{F} K$ generated by F on an operator K. In section 4 we analyze the role of the Hamiltonian on the evolution of the system, and we assume it induces on an operator K a transformation $\delta_{H} K$ having the same structure as the one induced by F. As a result we obtain the Heisenberg equation of motion for K. In section 5 we review symmetry transformations and analyze the conserved quantities arising from Noether theorem. We specialize the transformation to the case of rotation, boost, and translation obtaining the generators of each transformation. Then we show their commutators obey the Lie algebra of the Galilei group.

2 The QAP in Quantum Mechanics

2.1 Transformation theory

${ }^{1}$ Consider two operators $A(t), B(t)$ and their corresponding eigenvectors $\left|\chi_{A}, t>,\right| \chi_{B}, t>$ in the Heisenberg representation. Let us perform unitary transformations on each operator according to

$$
\begin{array}{ll}
A\left(t_{1}\right) \longrightarrow \widetilde{A}\left(t_{1}\right)=U_{A} A\left(t_{1}\right) U_{A}^{-1} & B\left(t_{2}\right) \longrightarrow \widetilde{B}\left(t_{2}\right)=U_{B} B\left(t_{2}\right) U_{B}^{-1} \\
\left|\chi_{A}, t_{1}>\longrightarrow\right| \widetilde{\chi}_{A}, t_{1}>:=U_{A} \mid \chi_{A}, t_{1}> & \left|\chi_{B}, t_{2}>\longrightarrow\right| \widetilde{\chi}_{B}, t_{2}>:=U_{B} \mid \chi_{B}, t_{2}>. \tag{1}
\end{array}
$$

The transformation function $<\chi_{B}, t_{2} \mid \chi_{A}, t_{1}>$ changes as

$$
<\tilde{\chi}_{B}, t_{2}\left|\widetilde{\chi}_{A}, t_{1}>=<\chi_{B}, t_{2}\right| U_{B}^{-1} U_{A} \mid \chi_{A}, t_{1}>.
$$

[^1]In the case of an infinitesimal transformation we write $U_{A}=1+\frac{i}{\hbar} F_{A}, U_{B}=1+\frac{i}{\hbar} F_{B}$, hence

$$
\begin{align*}
\delta<\chi_{B}, t_{2} \mid \chi_{A}, t_{1}> & :=<\tilde{\chi}_{B}, t_{2}\left|\widetilde{\chi}_{A}, t_{1}>-<\chi_{B}, t_{2}\right| \chi_{A}, t_{1}> \\
& =-\frac{i}{\hbar}<\chi_{B}, t_{2}\left|\left(F_{B}-F_{A}\right)\right| \chi_{A}, t_{1}> \tag{2}\\
\delta A & =-\frac{i}{\hbar}[A, F] . \tag{3}
\end{align*}
$$

Knowledge of the transformation function $<\chi_{B}, t_{2} \mid \chi_{A}, t_{1}>$ allows us to determine the dynamical aspects of the physical system. This is due to the fact that all quantities of physical interest are ultimately related to amplitudes of this type. Here, we notice the unitary transformation given in (1) doesn't change the eigenvalue spectra of the operators, however, it does change the transformation function unless we transform both operators by the same unitary transformation, in which case we would have $\delta<\chi_{B}, t_{2} \mid \chi_{A}, t_{1}>=$ 0 . In the general case, equation (2) allows us to relate the effect of a change in the transformation function, caused by an arbitrary change of eigenvectors, as the expectation value of the operator $-\frac{i}{\hbar}\left(F_{B}-F_{A}\right)$. A particular case of (1) is to consider transformations generated by a family of unitary operators $U(t)$ that, at the instant t, transforms all observables in the same way, i.e. $U_{A}(t)=U_{B}(t)$. Equation (2) then writes as

$$
\begin{equation*}
\delta<\chi_{B}, \left.t_{2}\left|\chi_{A}, t_{1}>=-\frac{i}{\hbar}<\chi_{B}, t_{2}\right|\left(F\left(t_{2}\right)-F\left(t_{1}\right)\right) \right\rvert\, \chi_{A}, t_{1}> \tag{4}
\end{equation*}
$$

The essence of the QAP is to find a form for the infinitesimal generators $F\left(t_{2}\right), F\left(t_{1}\right)$ from a dynamical principle.

2.2 The Schwinger QAP in Quantum Mechanics

2.2.1 The Schwinger formulation of the QAP

${ }^{2}$ Let us consider a quantum mechanical system described by canonical variables $\left\{q_{i}, p_{i}\right\}$ and Hamiltonian $H\left(q_{i}, p_{i}, t\right)$. We assume it exists a quantum action associated to the system that writes as

$$
\begin{equation*}
W=\int_{t_{1}}^{t_{2}} d t L\left(q_{i}(t), p_{i}(t), \dot{q}_{i}(t), \dot{p}_{i}(t), t\right) . \tag{5}
\end{equation*}
$$

In the Heisenberg representation the operators q_{i}, p_{i} are time dependent. Therefore, in order to consider independent variations of these quantities and the time t it is convenient to introduce an independent parameter τ such that $t=t(\tau), q_{i}(\tau)=q_{i}(t(\tau)), p_{i}(\tau)=$ $p_{i}(t(\tau))$.

[^2]Consider now infinitesimal variations in the functional form of these quantities

$$
\begin{align*}
t(\tau) & \longrightarrow \tilde{t}(\tau)=t(\tau)+\delta_{0} t(\tau) \\
q_{i}(\tau) & \longrightarrow \widetilde{q}_{i}(\tau)=q_{i}(\tau)+\delta_{0} q_{i}(\tau) \tag{6}\\
p_{i}(\tau) & \longrightarrow \widetilde{p}_{i}(\tau)=p_{i}(\tau)+\delta_{0} p_{i}(\tau) \tag{7}
\end{align*}
$$

where we allow $\delta_{0} q_{i}, \delta_{0} p_{i}$ to be operators. In this case we have to set a prescription in order to calculate $\delta K(q, p, \dot{q}, \dot{p})$ for any operator K. We adopt the convention of placing $\delta_{0} p$ to the left of $\frac{\partial K}{\partial p}$ and $\delta_{0} q$ to the right of $\frac{\partial K}{\partial q}$ (analogously for $\delta_{0} \dot{p}, \delta_{0} \dot{q}$) whenever there is ambiguity in the position of these operators, i.e. $\delta K=\frac{\partial K}{\partial q} \delta_{0} q+\delta_{0} p \frac{\partial K}{\partial p}+\frac{\partial K}{\partial \dot{q}} \delta_{0} \dot{q}+\delta_{0} \dot{p} \frac{\partial K}{\partial \dot{p}}$. We notice that

$$
\begin{equation*}
\delta_{0} \frac{d t}{d \tau}=\frac{d \delta_{0} t}{d \tau}, \quad \delta_{0} \frac{d \tau}{d t}=-\frac{d \tau}{d t} \frac{d \delta_{0} t}{d t} \tag{8}
\end{equation*}
$$

and

$$
\begin{aligned}
& \delta_{0} \frac{d q_{i}}{d t}=\delta_{0}\left(\frac{d \tau}{d t} \frac{d q_{i}(\tau)}{d \tau}\right)=-\frac{d \delta_{0} t}{d t} \frac{d q_{i}}{d t}+\frac{d \delta_{0} q_{i}}{d t} \\
& \delta_{0} \frac{d p_{i}}{d t}=\delta_{0}\left(\frac{d \tau}{d t} \frac{d p_{i}(\tau)}{d \tau}\right)=-\frac{d \delta_{0} t}{d t} \frac{d p_{i}}{d t}+\frac{d \delta_{0} p_{i}}{d t}
\end{aligned}
$$

then we obtain

$$
\begin{align*}
& \delta_{0} L\left(q_{i}(\tau), p_{i}(\tau), \frac{d \tau}{d t} \frac{d q_{i}(\tau)}{d \tau}, \frac{d \tau}{d t} \frac{d p_{i}(\tau)}{d \tau}, \tau\right)=\left(\frac{\partial L}{\partial q_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}\right) \delta_{0} q_{i}+\delta_{0} p_{i}\left(\frac{\partial L}{\partial p_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{p}_{i}}\right)+ \\
& +\left[\frac{\partial L}{\partial t}+\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i}\right)+\frac{d}{d t}\left(\dot{p}_{i} \frac{\partial L}{\partial \dot{p}_{i}}\right)\right] \delta_{0} t+\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\left(\delta_{0} q_{i}-\dot{q}_{i} \delta_{0} t\right)+\left(\delta_{0} p_{i}-\dot{p}_{i} \delta_{0} t\right) \frac{\partial L}{\partial \dot{p}_{i}}\right) . \tag{9}
\end{align*}
$$

In terms of τ we write

$$
W=\int_{\tau_{1}}^{\tau_{2}} d \tau \frac{d t}{d \tau} L\left(q_{i}(\tau), p_{i}(\tau), \frac{d \tau}{d t} \frac{d q_{i}(\tau)}{d \tau}, \tau\right)
$$

and using $(8,9)$ its variation gives

$$
\begin{align*}
\delta W= & \int_{t_{1}}^{t_{2}} d t\left\{\left[\frac{\partial L}{\partial t}-\frac{d L}{d t}+\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i}+\dot{p}_{i} \frac{\partial L}{\partial \dot{p}_{i}}\right)\right] \delta_{0} t+\left(\frac{\partial L}{\partial q_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}\right) \delta_{0} q_{i}+\right. \\
& \left.+\delta_{0} p_{i}\left(\frac{\partial L}{\partial q_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{p}_{i}}\right)\right\}+\left.\left(L \delta_{0} t+\frac{\partial L}{\partial \dot{q}_{i}}\left(\delta_{0} q_{i}-\dot{q}_{i} \delta_{0} t\right)+\left(\delta_{0} p_{i}-\dot{p}_{i} \delta_{0} t\right) \frac{\partial L}{\partial \dot{p}_{i}}\right)\right|_{t_{1}} ^{t_{2}} \tag{10}
\end{align*}
$$

The QAP imposes that δW depends only on contributions arising from the boundary, i.e.

$$
\delta W \equiv F\left(t_{2}\right)-F\left(t_{1}\right)=\left.\left(L \delta_{0} t+\frac{\partial L}{\partial \dot{q}_{i}}\left(\delta_{0} q_{i}-\dot{q}_{i} \delta_{0} t\right)+\left(\delta_{0} p_{i}-\dot{p}_{i} \delta_{0} t\right) \frac{\partial L}{\partial \dot{p}_{i}}\right)\right|_{t_{1}} ^{t_{2}}
$$

from which we identify the generator of canonical transformations of the system as

$$
\begin{equation*}
F(t):=L \delta_{0} t+\frac{\partial L}{\partial \dot{q}_{i}}\left(\delta_{0} q_{i}-\dot{q}_{i} \delta_{0} t\right)+\left(\delta_{0} p_{i}-\dot{p}_{i} \delta_{0} t\right) \frac{\partial L}{\partial \dot{p}_{i}} . \tag{11}
\end{equation*}
$$

The remaining part we impose to be zero. Due to the arbitrariness of the variations $\delta_{0} t, \delta_{0} q_{i}, \delta_{0} p_{i}$ we obtain

$$
\begin{align*}
& \frac{\partial L}{\partial t}-\frac{d L}{d t}+\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i}+\dot{p}_{i} \frac{\partial L}{\partial \dot{p}_{i}}\right)=0 \tag{12}\\
& \frac{\partial L}{\partial q_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}=0, \quad \frac{\partial L}{\partial p_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{p}_{i}}=0 \tag{13}
\end{align*}
$$

Using (13) we note the first equation is in fact equivalent to the operator identity

$$
\frac{d L}{d t}=\frac{\partial L}{\partial t}+\frac{\partial L}{\partial q_{i}} \dot{q}_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \ddot{q}_{i}+\dot{p}_{i} \frac{\partial L}{\partial p_{i}}+\ddot{p}_{i} \frac{\partial L}{\partial \dot{p}_{i}} .
$$

Some remarks:

(i) Equation (11) incorporates the form of the generator F for the three quantum lagrangians analysed by Schwinger in [2]: $L_{q}=p_{k} \dot{q}_{k}-H\left(q_{k}, p_{k}, t\right), L_{p}=-\dot{p}_{k} q_{k}-H\left(q_{k}, p_{k}, t\right)$ and $L=\frac{1}{2}\left(L_{q}+L_{p}\right)$.
(ii) It it is possible to work directly with the paremeter t instead of using the parameter τ. In order to obtain (10) we should take the transformations of $t, q_{k}(t), p_{k}(t), \dot{q}_{k}(t), \dot{p}_{k}(t)$ as

$$
\begin{aligned}
t & \longrightarrow \tilde{t}=t+\delta_{0} t(t) \\
q_{i}(t) & \longrightarrow \widetilde{q}_{i}(t)=q_{i}(t)+\delta_{0} q_{i}(t) \\
p_{i}(t) & \longrightarrow \widetilde{p}_{i}(t)=p_{i}(t)+\delta_{0} p_{i}(t) \\
\frac{d q_{i}(t)}{d t} & \longrightarrow \frac{d \widetilde{q}_{i}(t)}{d \tilde{t}}=\frac{d q_{i}(t)}{d t}+\delta_{0} \frac{d q_{i}(t)}{d t} \\
\frac{d p_{i}(t)}{d t} & \longrightarrow \frac{d \widetilde{p}_{i}(t)}{d \tilde{t}}=\frac{d p_{i}(t)}{d t}+\delta_{0} \frac{d p_{i}(t)}{d t} .
\end{aligned}
$$

The variations $\delta_{0} \frac{d q_{i}(t)}{d t}$ and $\delta_{0} \frac{d p_{i}(t)}{d t}$ agree with the previous ones, in fact

$$
\begin{align*}
\delta_{0} \frac{d q_{i}(t)}{d t} & :=\frac{d \widetilde{q}_{i}(t)}{d \widetilde{t}}-\frac{d q_{i}(t)}{d t}=\frac{d t}{d \widetilde{t}} \frac{d \widetilde{q}_{i}(t)}{d t}-\frac{d q_{i}(t)}{d t}=\left(1-\frac{d \delta_{0} t}{d \widetilde{t}}\right) \frac{d \widetilde{q}_{i}(t)}{d t}-\frac{d q_{i}(t)}{d t}= \\
& =\frac{d \delta_{0} q_{i}(t)}{d t}-\frac{d \delta_{0} t}{d \widetilde{t}} \frac{d \widetilde{q}_{i}(t)}{d t}=\frac{d \delta_{0} q_{i}(t)}{d t}-\frac{d \delta_{0} t}{d t} \frac{d q_{i}(t)}{d t} \tag{14}
\end{align*}
$$

where the last equality is established as a first order approximation in $\delta_{0} t, \delta_{0} q_{i}$. It is important to notice that although we allow for a variation of the parameter t, we keep t fixed when it appears as the argument of $q_{i}, p_{i}, \dot{q}_{i}, \dot{p}_{i}$. The use of the parameter τ is is just an alternative way to ensure this transformation for $\delta_{0} \frac{d q_{i}(t)}{d t}$ and the analogue for $\delta_{0} \frac{d p_{i}(t)}{d t}$.

2.2.2 Some derivations from the Schwinger QAP

(1) The Heisenberg equation of motion for operators

Let us choose $L_{q}=p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)$. From (11) we obtain

$$
\begin{equation*}
F(t)=p_{i} \delta_{0} q_{i}-H \delta_{0} t \tag{15}
\end{equation*}
$$

The unitary transformation $U=1+\frac{i}{\hbar} F(t)$ acts on an operator $K\left(q_{i}, p_{i}, t\right)$ according to (3),

$$
\begin{equation*}
\delta K=-\frac{i}{\hbar}[K, F]=-\frac{i}{\hbar}\left[K, p_{i} \delta_{0} q_{i}\right]+\frac{i}{\hbar}[K, H] \delta_{0} t \tag{16}
\end{equation*}
$$

Let us consider $\delta_{0} q_{i}=0$. Then $(15,16)$ become

$$
\begin{align*}
F & =-H \delta_{0} t \tag{17}\\
\delta K & =\frac{i}{\hbar}[K, H] \delta_{0} t \tag{18}
\end{align*}
$$

In this case where $F=-H \delta_{0} t$ and in order to obtain the Heisenberg equation for the operator, Schwinger assumes that ${ }^{3} \delta K$ corresponds to the negative change of K owing to its implicit or dynamical dependence on t, i.e.

$$
\begin{equation*}
\delta K=-\left(\frac{d K}{d t}-\frac{\partial K}{\partial t}\right) \delta_{0} t \tag{19}
\end{equation*}
$$

or in a equivalent way

$$
\begin{equation*}
\delta K=K\left(q_{i}\left(t-\delta_{0} t\right), p_{i}\left(t-\delta_{0} t\right), t\right)-K\left(q_{i}(t), p_{i}(t), t\right) \quad\left[\text { induced by } F=-H \delta_{0} t\right] \tag{20}
\end{equation*}
$$

This gives the Heisenberg equation

$$
\begin{equation*}
\frac{d K}{d t}=\frac{\partial K}{\partial t}-\frac{i}{\hbar}[K, H] \tag{21}
\end{equation*}
$$

Schwinger gives no proof of the general validity of relation (20), henceforth it must be considered as an additional prescription to the QAP.
Remark: Taking $K\left(q_{i}(t), p_{i}(t), t\right)=q_{i}(t)$ and $K\left(q_{i}(t), p_{i}(t), t\right)=p_{i}(t)$ in (20) we obtain

$$
\begin{align*}
\delta q_{i}(t) & =q_{i}\left(t-\delta_{0} t\right)-q_{i}(t)=-\dot{q}_{i} \delta_{0} t \\
\delta p_{i}(t) & =p_{i}\left(t-\delta_{0} t\right)-p_{i}(t)=-\dot{p}_{i} \delta_{0} t \tag{22}
\end{align*}
$$

From the three basic variations associated to the operator $q_{i}(t)$ [4]

$$
\begin{aligned}
\delta_{0} q_{i}(t) & :=\widetilde{q}_{i}(t)-q_{i}(t) \quad \text { (variation in the functional form) } \\
\bar{\delta} q_{i}(t) & :=q_{i}\left(t+\delta_{0} t\right)-q_{i}(t) \quad \text { the point variation) } \\
\delta_{T} q_{i}(t) & :=\widetilde{q}_{i}\left(t+\delta_{0} t\right)-q_{i}(t)=\delta_{0} q_{i}(t)+\bar{\delta} q_{i}(t) \quad \text { the total variation) }
\end{aligned}
$$

we conclude that (in this case when one takes $\left.F=-H \delta_{0} t\right) \delta q_{i}(t)$ differs from $\delta_{0} q_{i}(t)$, $\bar{\delta} q_{i}(t)$, and $\delta_{T} q_{i}(t)$. Therefore, δq_{i} should be interpreted as a new variation induced by $F=-H \delta_{0} t$. The same applies to δp_{i}.

[^3](2) The commutators $\left[q_{i}, p_{j}\right],\left[p_{i}, p_{j}\right],\left[q_{i}, q_{j}\right]$

Let us choose again $L_{q}=p_{j} \dot{q}_{j}-H\left(q_{j}, p_{j}, t\right)$. Consider $\delta_{0} t=0$. Then $(15,16)$ become

$$
\begin{aligned}
& F(t)=p_{j} \delta_{0} q_{j} \\
& \delta K=-\frac{i}{\hbar}\left[K, p_{j} \delta_{0} q_{j}\right]
\end{aligned}
$$

At this point, Schwinger obtains part of the fundamental commutators by assuming that $\delta_{0} q_{j}$ is a function rather than an operator. This allow us to write

$$
\begin{equation*}
\delta K=-\frac{i}{\hbar}\left[K, p_{j}\right] \delta_{0} q_{j} . \tag{23}
\end{equation*}
$$

Taking the particular case of $K=q_{i}$ we obtain

$$
\begin{equation*}
\delta q_{i}=-\frac{i}{\hbar}\left[q_{i}, p_{j}\right] \delta_{0} q_{j} \tag{24}
\end{equation*}
$$

that is a relation between two unknown quantities: δq_{i} and the commutator $\left[q_{i}, q_{j}\right]$. In order to determine the commutator $\left[q_{i}, p_{j}\right]$ Schwinger assumes that $\delta q_{i}=\delta_{0} q_{i}$. Then, we have

$$
\begin{equation*}
\left[q_{i}, p_{j}\right]=i \hbar \delta_{i j} . \tag{25}
\end{equation*}
$$

By a similar argument, taking $K=p_{i}$ we obtain

$$
\begin{equation*}
\left[p_{i}, p_{j}\right]=0 . \tag{26}
\end{equation*}
$$

It remains to determine the commutator $\left[q_{i}, q_{j}\right]$. This time we consider the action as $L_{p}=-\dot{p}_{j} q_{j}-H\left(q_{j}, p_{j}, t\right)$. From (11) we get

$$
F(t)=-\delta_{0} p_{j} q_{j}-H \delta_{0} t .
$$

Taking $\delta_{0} t=0$ and repeating the same development we obtain the commutator $\left[q_{i}, q_{j}\right]=0$.
Remark: We assumed $\delta q_{i}=\delta_{0} q_{i}$. By definition of $\delta_{0} q_{i}$ we obtain $\delta q_{i}(t)=\widetilde{q}_{i}(t)-q_{i}(t)$. Since (24) is a particular case of (23) with $K\left(q_{i}(t), p_{i}(t), t\right)=q_{i}(t)$, we have

$$
\begin{align*}
\delta q_{i}(t)=\widetilde{q}_{i}(t)-q_{i}(t) \Rightarrow & \delta K\left(q_{i}(t), p_{i}(t), t\right) \equiv K\left(\widetilde{q}_{i}(t), p_{i}(t), t\right)-K\left(q_{i}(t), p_{i}(t), t\right) \tag{27}\\
& {\left[\text { induced by } F=p_{i} \delta_{0} q_{i}\right] }
\end{align*}
$$

that establishes the definition of δK induced by $F=p_{i} \delta_{0} q_{i}$. A similar argument applies to $\delta p_{i}(t)$ which gives

$$
\begin{equation*}
\delta K\left(q_{i}(t), p_{i}(t), t\right) \equiv K\left(q_{i}(t), \widetilde{p}_{i}(t), t\right)-K\left(q_{i}(t), p_{i}(t), t\right) \quad\left[\text { induced by } F=-\delta_{0} p_{i} q_{i}\right] \tag{28}
\end{equation*}
$$

As we finish this review of Schwinger's QAP, we emphasize the following points:
(i) The variations $\delta_{0} q_{i}, \delta_{0} p_{i}$ are functions rather than operators. This assumption is necessary to establish the commutators. The possibility to have a more general situation force us to consider $\delta_{0} q_{i}, \delta_{0} p_{i}$ as operators.
(ii) The commutators are derived using a particular form for the generator F with $\delta_{0} t=0$. This suggests us to look for an action and transformations of q_{k}, p_{k} that results on $F=p_{i} \delta_{0} q_{i}$ and $F=-\delta_{0} p_{j} q_{j}$ directly from the beginning. The fact of using two different Lagrangians to obtain the commutators indicates that it may be necessary to incorporate the two Lagrangians L_{q} and L_{p} into a single action.
(iii) The derivation of the Heisenberg equation for operators assumes a particular form $F=-H \delta_{0} t$. This suggests us to consider the Hamiltonian as a separated generator.
(iv) Equations (20, 27, 28) fix the variation δK for different choices of F and. These cases assume that $\delta_{0} q_{i}, \delta_{0} p_{i}$ weren't operators. What will happen to δK if we allow $\delta_{0} q_{i}, \delta_{0} p_{i}$ to be operators?

3 A new formulation of the QAP in quantum mechanics

3.1 Establishing the QAP

In this section we intend to present the QAP in a way that incorporates the observations made in (i)-(iv). Again, let us consider a quantum mechanical system described by canonical variables $\left\{q_{i}, p_{i}\right\}$ with Hamiltonian $H\left(q_{i}, p_{i}, t\right)$. In order to keep the discussion as simple as possible and to avoid non-essential complications due to spin we assume that all observables can be written in terms of these fundamental operators. Let us suppose that the initial and final configurations of the system happen at instants t_{1}, t_{2}. We state the QAP as follows: There exists a functional of the canonical variables defined by

$$
\begin{equation*}
W \equiv \int_{t_{1}}^{t_{2}} d t\left(p_{i} \dot{q}_{i}-\dot{p}_{i} q_{i}-2 H(q, p, t)\right) \tag{29}
\end{equation*}
$$

such that under a transformation of the canonical variables ($\delta_{0} q_{i}, \delta_{0} p_{i}$ being operators)

$$
\begin{align*}
q_{i}(t) \longrightarrow \widetilde{q}_{i}(t) & :=q_{i}(t)+\delta_{0} q_{i}(t) \\
p_{i}(t) \longrightarrow \widetilde{p}_{i}(t) & :=p_{i}(t)+\delta_{0} p_{i}(t) \tag{30}
\end{align*}
$$

it transforms as $\delta W=F\left(t_{2}\right)-F\left(t_{1}\right)$. This quantity is related to the variation of the amplitude $<\chi_{B}, t_{2} \mid \chi_{A}, t_{1}>$ by

$$
\begin{equation*}
\delta<\chi_{B}, \left.t_{2}\left|\chi_{A}, t_{1}>:=-\frac{i}{\hbar}<\chi_{B}, t_{2}\right| \delta W \right\rvert\, \chi_{A}, t_{1}> \tag{31}
\end{equation*}
$$

where $F\left(t_{1}\right)$ and $F\left(t_{2}\right)$ are generators of unitary transformations acting on the states $\mid \chi_{A}, t_{1}>$ and $\mid \chi_{B}, t_{2}>$.

From (30) we have

$$
\delta W=\left.\left(p_{i} \delta_{0} q_{i}-\delta_{0} p_{i} q_{i}\right)\right|_{t_{1}} ^{t_{2}}+2 \int_{t_{1}}^{t_{2}} d t\left(-\dot{p}_{i} \delta_{0} q_{i}+\delta_{0} p_{i} \dot{q}_{i}-\frac{\partial H}{\partial q_{i}} \delta_{0} q_{i}-\delta_{0} p_{i} \frac{\partial H}{\partial p_{i}}\right) .
$$

Assuming the QAP we must have $\delta W=F\left(t_{2}\right)-F\left(t_{1}\right)$. Therefore, we identify

$$
\begin{equation*}
F(t)=p_{i} \delta_{0} q_{i}-\left.\delta_{0} p_{i} q_{i}\right|_{t} . \tag{32}
\end{equation*}
$$

The QAP fixes the remaining part as zero i.e.

$$
\int_{t_{1}}^{t_{2}} d t\left(-\dot{p}_{i} \delta_{0} q_{i}+\delta_{0} p_{i} \dot{q}_{i}-\frac{\partial H}{\partial q_{i}} \delta_{0} q_{i}-\delta_{0} p_{i} \frac{\partial H}{\partial p_{i}}\right)=0
$$

and since the variations $\delta_{0} q_{i}, \delta_{0} p_{i}$ are arbitrary we must have

$$
\begin{equation*}
\frac{\partial H}{\partial q_{i}}=-\dot{p}_{i}, \quad \frac{\partial H}{\partial p_{i}}=\dot{q}_{i} . \tag{33}
\end{equation*}
$$

Consider now

$$
H\left(q,+\delta_{0} q, p+\delta_{0} p, t+\delta t\right)-H(q, p, t)=\frac{\partial H}{\partial q_{i}} \delta_{0} q_{i}+\delta_{0} p_{i} \frac{\partial H}{\partial p_{i}}+\frac{\partial H}{\partial t} \delta t .
$$

Taking the particular case of variations $\delta_{0} q_{i}=\dot{q}_{i} \delta t, \delta_{0} p_{i}=\dot{p}_{i} \delta t$ and using (33) we have

$$
\begin{equation*}
\frac{d H}{d t}=\frac{\partial H}{\partial t} . \tag{34}
\end{equation*}
$$

The boundary term we obtained in (32) differs from the one derived by Schwinger, e.g. $F=p_{i} \delta_{0} q_{i}-H \delta_{0} t$, in that we do not have any contribution arising from the Hamiltonian. The reason is that we do not consider time transformations in (30). This separation of the Hamiltonian from the generator F suggest the time evolution of states is generated by H alone.

Now, we should check the consistency between unitary transformations generated by F and H. Let us consider a time independent Hamiltonian (i.e. $\frac{\partial H}{\partial t}=0$) and the following transformations

$$
\left|\chi, t>\xrightarrow{e^{\frac{i}{\hbar} F(t)}}\right| \widetilde{\chi}, t>=e^{\frac{i}{\hbar} F(t)}|\chi, t>, \quad| \chi, t_{0}>^{\frac{i}{\hbar} H\left(t-t_{0}\right)}\left|\chi, t>=e^{\frac{i}{\hbar} H\left(t-t_{0}\right)}\right| \chi, t_{0}>.
$$

Consistency requires that

$$
\begin{aligned}
& \left|\chi, t_{0}>\xrightarrow{e \xrightarrow{\frac{i}{\hbar} H\left(t-t_{0}\right)}}\right| \chi, \left.t>\xrightarrow{e^{\frac{i}{\hbar} F(t)}} \right\rvert\, \widetilde{\chi}, t> \\
& \left|\chi, t_{0}>\xrightarrow{e \xrightarrow{\frac{i}{\hbar} F\left(t_{0}\right)}}\right| \widetilde{\chi}, t_{0}>\xrightarrow{e \stackrel{i}{\hbar} H\left(t-t_{0}\right)} \mid \widetilde{\chi}, t>
\end{aligned}
$$

i.e.

$$
e^{\frac{i}{\hbar} F(t)}=e^{\frac{i}{\hbar} H\left(t-t_{0}\right)} e^{\frac{i}{\hbar} F\left(t_{0}\right)} e^{-\frac{i}{\hbar} H\left(t-t_{0}\right)}
$$

For an infinitesimal transformation with $\delta t=t-t_{0}$ this gives $F(t)=F\left(t_{0}\right)+\frac{i}{\hbar} \delta t\left[H, F\left(t_{0}\right)\right]$, or equivalently

$$
\frac{d F}{d t}=-\frac{i}{\hbar}[F, H] .
$$

Using (32), the previous equation can be rewritten as
$\dot{p}_{i} \delta_{0} q_{i}+p_{i} \delta_{0} \dot{q}_{i}-\delta_{0} \dot{p}_{i} q_{i}-\delta_{0} p_{i} \dot{q}_{i}=-\frac{i}{\hbar}\left[p_{i}, H\right] \delta_{0} q_{i}-\frac{i}{\hbar} p_{i}\left[\delta_{0} q_{i}, H\right]+\frac{i}{\hbar} \delta_{0} p_{i}\left[q_{i}, H\right]+\frac{i}{\hbar}\left[\delta_{0} p_{i}, H\right] q_{i}$ which gives

$$
\begin{align*}
\dot{q}_{i} & =-\frac{i}{\hbar}\left[q_{i}, H\right], & \dot{p}_{i} & =-\frac{i}{\hbar}\left[p_{i}, H\right] \tag{35}\\
\delta_{0} \dot{q}_{i} & =-\frac{i}{\hbar}\left[\delta_{0} q_{i}, H\right], & \delta_{0} \dot{p}_{i} & =-\frac{i}{\hbar}\left[\delta_{0} p_{i}, H\right] .
\end{align*}
$$

The commutators involving the variations $\delta_{0} q_{i}, \delta_{0} p_{i}$ are in general different from zero, a fact that is only possible by assuming them to be operators. Another condition arises when we consider $\dot{q}_{i}=-\frac{i}{\hbar}\left[q_{i}, H\right]$ and take the variation δ_{0} directly from this relation: $\delta_{0} \dot{q}_{i}=-\frac{i}{\hbar}\left[\delta_{0} q_{i}, H\right]-\frac{i}{\hbar}\left[q_{i}, \delta_{0} H\right]$, that gives

$$
\begin{equation*}
\left[q_{i}, \delta_{0} H\right]=0 \tag{36}
\end{equation*}
$$

Analogously we obtain

$$
\begin{equation*}
\left[p_{i}, \delta_{0} H\right]=0 \tag{37}
\end{equation*}
$$

These equations are consistency conditions to be satisfied by the variations $\delta_{0} q_{i}, \delta_{0} p_{i}$. It becomes clear that the choice of the Hamiltonian restrict the type of transformations (30) we can consider for the system.

In Schwinger's original formulation [1], the variations $\delta_{0} q_{i}, \delta_{0} p_{i}$ were assumed to commute with the canonical variables. Therefore, the equations he obtains is $\delta_{0} \dot{q}_{i}=-\frac{i}{\hbar}\left[q_{i}, \delta_{0} H\right]$, $\delta_{0} \dot{p}_{i}=-\frac{i}{\hbar}\left[p_{i}, \delta_{0} H\right]$ which differs from ours. Consistency conditions $(36,37)$ are absent in Schwinger's formulation and appear here due to the operator character of the variations $\delta_{0} q, \delta_{0} p$.

3.2 The fundamental commutators

We have not determined yet any fundamental commutators among the canonical variables, therefore, the previous equations do not establish any dynamical aspect of the model.

We assume the generator F induce an infinitesimal transformation on the canonical variables $q_{i}(t), p_{i}(t)$ that we write as $\delta_{F} q_{i} \equiv \bar{\delta}_{F} q_{i}+\delta_{0} q_{i}, \delta_{F} p_{i} \equiv \bar{\delta}_{F} p_{i}+\delta_{0} p_{i}$. As we will see below, the additional terms $\bar{\delta}_{F} q_{i}, \bar{\delta}_{F} p_{i}$ are required in order to garantee the consistency of the formalism in the case $\delta_{0} q_{i}, \delta_{0} p_{i}$ are operators.

In order to fix the fundamental commutators, let us consider the action of the generator F on an operator $K(q, p, t)$. Since $F=p_{i} \delta_{0} q_{i}-\delta_{0} p_{i} q_{i}$ doesn't depend on t, it is reasonable to assume from $(27,28)$ that

$$
\begin{equation*}
\delta_{F} K(q, p, t):=\widetilde{K}\left(q+\delta_{0} q, p+\delta_{0} p, t\right)-K(q, p, t) \equiv \bar{\delta}_{F} K+\delta_{0} K \tag{38}
\end{equation*}
$$

where

$$
\begin{align*}
\delta_{0} K & :=\frac{\partial K}{\partial q_{i}} \delta_{0} q_{i}+\delta_{0} p_{i} \frac{\partial K}{\partial p_{i}} \tag{39}\\
\bar{\delta}_{F} K & :=\widetilde{K}(q, p, t)-K(q, p, t) \tag{40}
\end{align*}
$$

with $\bar{\delta}_{F} K$ referring to an arbitrary change in the functional form of the operator K. Also,

$$
\begin{equation*}
\delta_{F} K \equiv U K U^{-1}-K=-\frac{i}{\hbar}[K, F] \tag{41}
\end{equation*}
$$

From $(38,41)$ we obtain the following equation
$\bar{\delta}_{F} K+\frac{\partial K}{\partial q_{i}} \delta_{0} q_{i}+\delta_{0} p_{i} \frac{\partial K}{\partial p_{i}}=-\frac{i}{\hbar}\left[K, p_{i}\right] \delta_{0} q_{i}-\frac{i}{\hbar} p_{i}\left[K, \delta_{0} q_{i}\right]+\frac{i}{\hbar} \delta_{0} p_{i}\left[K, q_{i}\right]+\frac{i}{\hbar}\left[K, \delta_{0} p_{i}\right] q_{i}$
which gives

$$
\begin{align*}
\frac{\partial K}{\partial q_{i}} & =-\frac{i}{\hbar}\left[K, p_{i}\right], \quad \frac{\partial K}{\partial p_{i}}=\frac{i}{\hbar}\left[K, q_{i}\right] \tag{42}\\
\bar{\delta}_{F} K & =\frac{i}{\hbar}\left[K, \delta_{0} p_{i}\right] q_{i}-\frac{i}{\hbar} p_{i}\left[K, \delta_{0} q_{i}\right] \tag{43}
\end{align*}
$$

We see from (43) that $\bar{\delta}_{F} K$ is determined by the commutators of K with the operators $\delta_{0} q_{i}, \delta_{0} p_{i}$. In particular, taking for K the q_{k} and p_{k} in (41) we obtain the commutator relations

$$
\begin{equation*}
\left[q_{i}, p_{j}\right]=i \hbar \delta_{i j}, \quad\left[q_{i}, q_{j}\right]=\left[p_{i}, p_{j}\right]=0 \tag{44}
\end{equation*}
$$

and $\bar{\delta}_{F} q_{i}=\frac{i}{\hbar}\left[q_{i}, \delta_{0} p_{j}\right] q_{j}-\frac{i}{\hbar} p_{j}\left[q_{i}, \delta_{0} q_{j}\right], \quad \bar{\delta}_{F} p_{i}=\frac{i}{\hbar}\left[p_{i}, \delta_{0} p_{j}\right] q_{j}-\frac{i}{\hbar} p_{j}\left[p_{i}, \delta_{0} q_{j}\right]$. Placing K as $\delta_{0} q, \delta_{0} p$ into (42) we obtain

$$
\begin{equation*}
\bar{\delta}_{F} q_{i}=-\frac{\partial \delta_{0} p_{j}}{\partial p_{i}} q_{j}+p_{j} \frac{\partial \delta_{0} q_{j}}{\partial p_{i}}, \quad \bar{\delta}_{F} p_{i}=\frac{\partial \delta_{0} p_{j}}{\partial q_{i}} q_{j}-p_{j} \frac{\partial \delta_{0} q_{j}}{\partial q_{i}} \tag{45}
\end{equation*}
$$

that works as an alternative definition for $\bar{\delta}_{F} q_{i}, \bar{\delta}_{F} p_{i}$. From (32) we write ${ }^{4}$

$$
\begin{array}{ccc}
\bar{\delta}_{F} q_{i}=\frac{d F}{d p_{i}}-\delta_{0} q_{i} & \Longrightarrow \delta_{F} q_{i}=\frac{d F}{d p_{i}} \tag{46}\\
\bar{\delta}_{F} p_{i}=-\frac{d F}{d q_{i}}-\delta_{0} p_{i} & \Longrightarrow \quad \delta_{F} p_{i}=-\frac{d F}{d q_{i}}
\end{array}
$$

which resembles equations (33) with H in place of F. It should be noticed that the effect of the generator F on the canonical variables is to produce a change $\delta_{F} q=\bar{\delta}_{F} q+\delta_{0} q, \delta_{F} p=$ $\bar{\delta}_{F} p+\delta_{0} p$, that adds contributions $\bar{\delta}_{F} q, \bar{\delta}_{F} p$ to the original arbitrary variations $\delta_{0} q, \delta_{0} p$. Equation (38) is an assumption we have to make in order to calculate the fundamental commutators. It gives the response of $K(q, p, t)$ to the action of the generator F. It has the same role as the assumption made by Schwinger that $\delta K=-\left(\frac{d K}{d t}-\frac{\partial K}{\partial t}\right) \delta t$, although the contents of one and another are quite different.

4 The Dynamical Evolution of the System and the Hamiltonian

4.1 The Heisenberg equation of motion for an operator

We consider now the role of the Hamiltonian on the dynamics of the system. Let us extend the previous construction considering $F=H \delta t$, i.e. we assume the generator $H \delta t$ induce an infinitesimal transformation on the canonical variables that we write as $\delta_{H} q=\bar{\delta}_{H} q+\delta_{t} q, \delta_{H} p=\bar{\delta}_{H} p+\delta_{t} p$. The form of this transformation will be fixed below.

Given an operator K, in analogy with (41), we assume it transforms under the action of the generator H as

$$
\begin{equation*}
\delta_{H} K=-\frac{i}{\hbar}[K, H \delta t] \tag{47}
\end{equation*}
$$

with (20) suggesting us to write $\delta_{H} K=\widetilde{K}\left(q+\delta_{t} q, p+\delta_{t} p, t\right)-K(q, p, t) \equiv \bar{\delta}_{H} K+\delta_{t} K$ with $\bar{\delta}_{H} K$ and $\delta_{t} K$ defined as in $(39,40)$

$$
\begin{align*}
\delta_{t} K & :=\frac{\partial K}{\partial q_{i}} \delta_{t} q_{i}+\delta_{t} p_{i} \frac{\partial K}{\partial p_{i}} \tag{48}\\
\bar{\delta}_{H} K & :=\widetilde{K}(q, p, t)-K(q, p, t) . \tag{49}
\end{align*}
$$

Thus we obtain ${ }^{5}$

$$
\bar{\delta}_{H} K(q, p, t)+\frac{\partial K}{\partial q_{i}} \delta_{t} q_{i}+\delta_{t} p_{i} \frac{\partial K}{\partial p_{i}}=-\frac{i}{\hbar}[K, H] \delta t-\frac{i}{\hbar} H[K, \delta t]
$$

[^4]or
\[

$$
\begin{align*}
\frac{\partial K}{\partial q_{i}} \delta_{t} q_{i}+\delta_{t} p_{i} \frac{\partial K}{\partial p_{i}} & =-\frac{i}{\hbar}[K, H] \delta t \tag{50}\\
\bar{\delta}_{H} K(q, p, t) & =-\frac{i}{\hbar} H[K, \delta t]
\end{align*}
$$
\]

Now, since the variation δt is not an operator we obtain $\bar{\delta}_{H} K=\bar{\delta}_{H} q=\bar{\delta}_{H} p=0$. Taking $K=q$ in (47) and using (35) we have $\delta_{t} q_{i}=-\frac{i}{\hbar}\left[q_{i}, H\right] \delta t=\dot{q}_{i} \delta t$. Analogously, $\delta_{t} p_{i}=\dot{p}_{i} \delta t$. Replacing these values into (50) we obtain the Heisenberg equation for the operator

$$
\begin{equation*}
\frac{d K}{d t}=\frac{\partial K}{\partial t}-\frac{i}{\hbar}[K, H] . \tag{51}
\end{equation*}
$$

A final consistency check consists to put $K=H$ into (47), which gives $\delta_{t} H=-\frac{i}{\hbar}[H, H] \delta t=$ 0 . Also, by definition we have $\delta_{t} H:=\frac{\partial H}{\partial q_{i}} \delta_{t} q_{i}+\delta_{t} p_{i} \frac{\partial H}{\partial p_{i}}=-\dot{p}_{i} \dot{q}_{i} \delta t+\dot{p}_{i} \delta t \dot{q}_{i}=0$ upon using (33). Finally, we notice that

$$
\begin{aligned}
\delta_{H} q_{i} & =\bar{\delta}_{H} q_{i}+\delta_{t} q_{i}=\dot{q}_{i} \delta t=\frac{\partial H}{\partial p_{i}} \delta t \\
\delta_{H} p_{i} & =\bar{\delta}_{H} p_{i}+\delta_{t} p_{i}=\dot{p}_{i} \delta t=-\frac{\partial H}{\partial q_{i}} \delta t
\end{aligned}
$$

that is consistent with (46) upon the identification $F_{t}=H \delta t$.

4.2 The Heisenberg equation for the q-eigenstates

As an application of the previous development let us consider the position eigenstates $\mid q, t>$. Considering $F_{t}=H \delta t$ we have $\delta_{H}\left|q, t>=\frac{i}{\hbar} \delta t H\right| q, t>$. We develop $\delta_{H} \mid q, t>$ as ${ }^{6}$

$$
\delta_{H}\left|q, t>:=\left|q, t+\delta t>-\left|q, t>=\delta t \frac{\partial}{\partial t}\right| q, t>.\right.\right.
$$

Then we get

$$
\begin{equation*}
\frac{\partial}{\partial t}\left|q, t>=\frac{i}{\hbar} H\right| q, t> \tag{52}
\end{equation*}
$$

In Schwinger's approach [1], equation (52) is obtained in a quite different manner, as it follows from $F=p_{i} \delta_{0} q_{i}-H \delta t$ and $\delta\left|q, t>=-\frac{i}{\hbar} F\right| q, \left.t>=\frac{i}{\hbar}\left(p_{i} \delta_{0} q_{i}-H \delta t\right) \right\rvert\, q, t>$. Then, if $\delta_{0} q_{i}$ is a c-number, together with δt, in Schwinger's formalism one can formally calculate the functional derivatives $\frac{\delta}{\delta q_{i}}\left|q, t>, \frac{\delta}{\delta t}\right| q, t>$, this last one we associate to equation (52).

[^5]
5 Symmetry Transformations and Conserved Quantities

5.1 Noether Theorem

We analyze now symmetry transformations and the associated conserved quantities. We will follow the same development as [4] adapted to an Hamiltonian formalism. Let us denote $w=p_{i} \dot{q}_{i}-\dot{p}_{i} q_{i}-2 H(q, p)$ and take

$$
W[q(t), p(t), \dot{q}(t), \dot{p}(t), t]=\int d t w(q(t), p(t), \dot{q}(t), \dot{p}(t)) .
$$

We submit the canonical variables and the time to arbitrary transformations of the type

$$
\begin{align*}
t & \rightarrow t^{\prime}=t+\delta t \\
q_{i} & \rightarrow q_{i}^{\prime}\left(t^{\prime}\right)=q_{i}(t)+\delta q_{i}(t) \tag{53}\\
p_{i} & \rightarrow p_{i}^{\prime}\left(t^{\prime}\right)=p_{i}(t)+\delta p_{i}(t)
\end{align*}
$$

that are related to $\delta_{0} q_{i}, \delta_{0} p_{i}$ by

$$
\delta q_{i}(t)=\delta_{0} q_{i}(t)+\dot{q}_{i}(t) \delta t, \quad \delta p_{i}(t)=\delta_{0} p_{i}(t)+\dot{p}_{i}(t) \delta t .
$$

Another useful relation is

$$
\delta \frac{d q_{i}}{d t}=\frac{d \delta q_{i}}{d t}-\frac{d \delta t}{d t} \frac{d q_{i}}{d t}, \quad \delta \frac{d p_{i}}{d t}=\frac{d \delta p_{i}}{d t}-\frac{d \delta t}{d t} \frac{d p_{i}}{d t} .
$$

In addition to transformations (53) we also consider an arbitrary change on the functional form of $w(q, p)$ that is independent on the functional changes of the canonical variables and keeps the equations of motion invariant, e.g. $w(q, p) \rightarrow w(q, p)+\widetilde{\Omega}(q, p)$. The only possibility comes from a functional change on the Hamiltonian, $H \rightarrow H^{\prime}=H+$ $\Omega(q, p)(\widetilde{\Omega} \equiv-2 \Omega)$. In terms of this modified Hamiltonian H^{\prime} the equations of motion write as $\dot{q}_{i}=\frac{i}{\hbar}\left[q_{i}, H^{\prime}\right]=\frac{i}{\hbar}\left[q_{i}, H+\Omega\right], \quad \dot{p}_{i}=\frac{i}{\hbar}\left[p_{i}, H^{\prime}\right]=\frac{i}{\hbar}\left[p_{i}, H+\Omega\right]$ which stay invariant if $\left[q_{i}, \Omega(q, p)\right]=\left[p_{i}, \Omega(q, p)\right]=0$, that gives $\Omega(q, p)$ constant, which we can ignore. Transformations (53) are a symmetry transformation [4] if

$$
W^{\prime}\left[q^{\prime}\left(t^{\prime}\right), p^{\prime}\left(t^{\prime}\right), \dot{q}^{\prime}\left(t^{\prime}\right), \dot{p}^{\prime}\left(t^{\prime}\right), t^{\prime}\right]=W[q(t), p(t), \dot{q}(t), \dot{p}(t)]
$$

which gives

$$
\int d t\left\{\frac{d}{d t}\left(p_{i} \delta q_{i}-\delta p_{i} q_{i}-2 H \delta t\right)-2\left(\dot{p}_{i}+\frac{\partial H}{\partial q_{i}}\right) \delta q_{i}+2 \delta p_{i}\left(\dot{q}_{i}-\frac{\partial H}{\partial p_{i}}\right)+2\left(\frac{d H}{d t}-\frac{\partial H}{\partial t}\right) \delta t\right\}=0
$$

Using the equations of motion we obtain

$$
\frac{d}{d t}\left(p_{i} \delta q_{i}-\delta p_{i} q_{i}-2 H \delta t\right)=0
$$

and from this we write the corresponding conserved quantity

$$
\begin{equation*}
Q(t)=p_{i} \delta q_{i}-\delta p_{i} q_{i}-2 H \delta t . \tag{54}
\end{equation*}
$$

Let us consider transformations of the canonical variables that corresponds to infinitesimal translations, rotations and boosts. Their effect on the canonical variables is

$$
\begin{aligned}
q_{i} & \rightarrow q_{i}^{\prime}=q_{i}+\delta a_{i}+(\delta \omega \times q)_{i}+\delta v_{i} t \\
p_{i} & \rightarrow p_{i}^{\prime}=p_{i}+(\delta \omega \times p)_{i}+m \delta v_{i}
\end{aligned}
$$

Let us consider the particular cases:
(i) Boosts: $\delta q_{i}:=\delta v_{i} t, \quad \delta p_{i}:=m \delta v_{i}$. The conserved current is $Q(t)=\left(p_{i} t-m q_{i}\right) \delta v_{i}$ and the boost generators are identified as $N_{i}:=p_{i} t-m q_{i}$ with $\frac{d Q(t)}{d t}=0 \Rightarrow \frac{d N_{i}}{d t}=0$.
(ii) Rotations: $\delta q_{i}:=\epsilon_{i j k} \delta \omega_{j} q_{k}, \quad \delta p_{i}:=\epsilon_{i j k} \delta \omega_{j} p_{k}$. The conserved current is $Q(t)=$ $2 \epsilon_{i j k} q_{j} p_{k} \delta \omega_{i}$ and the rotation generators are $J_{i}=\epsilon_{i j k} q_{j} p_{k}$ with $\frac{d J_{i}}{d t}=0$.
(iii) Translations: $\delta q_{i}:=\delta a_{i}, \quad \delta p_{i}:=0$. The conserved current is $Q(t)=p_{i} \delta a_{i}$ and the translation generators are $P_{i}=p_{i}$ with $\frac{d P_{i}}{d t}=0$.

5.2 Galilei algebra

We analyze now the commutators between the generators $\vec{P}, \vec{J}, \vec{N}, H$ for the case of a massive spinless particle. Using the Heisenberg equation for operators (51) we obtain

$$
\begin{aligned}
{\left[P_{i}, H\right] } & =i \hbar\left(\frac{d}{d t}-\frac{\partial}{\partial t}\right) P_{i}=-i \hbar \frac{\partial P_{i}}{\partial t}=-i \hbar \frac{\partial p_{i}}{\partial t}=0 \\
{\left[J_{i}, H\right] } & =i \hbar\left(\frac{d}{d t}-\frac{\partial}{\partial t}\right) J_{i}=-i \hbar \frac{\partial J_{i}}{\partial t}=-i \hbar \frac{\partial\left(\epsilon_{i j k} q_{j} p_{k}\right)}{\partial t}=0 \\
{\left[N_{i}, H\right] } & =i \hbar\left(\frac{d}{d t}-\frac{\partial}{\partial t}\right) N_{i}=-i \hbar \frac{\partial N_{i}}{\partial t}=-i \hbar \frac{\partial\left(p_{i} t-m q_{i}\right)}{\partial t}=-i \hbar p_{i}=-i \hbar P_{i}
\end{aligned}
$$

The other relations follow from the fundamental commutators (44)

$$
\begin{aligned}
{\left[P_{i}, P_{j}\right] } & =\left[p_{i}, p j\right]=0 \\
{\left[J_{i}, P_{j}\right] } & =\left[\epsilon_{i k l} q_{k} p_{l}, p_{j}\right]=\epsilon_{i k l}\left[q_{k}, p_{j}\right] p_{l}=i \hbar \epsilon_{i j l} p_{l}=i \hbar \epsilon_{i j l} P_{l} \\
{\left[N_{i}, P_{j}\right] } & =\left[p_{i} t-m q_{i}, p_{j}\right]=-i \hbar m \delta_{i j} \\
{\left[J_{i}, J_{j}\right] } & =i \hbar \epsilon_{i j k} J_{k} \\
{\left[N_{i}, J_{j}\right] } & =\left[p_{i} t-m q_{i}, \epsilon_{j k l} q_{k} p_{l}\right]=\epsilon_{j k l} t\left[p_{i}, q_{k}\right] p_{l}-m \epsilon_{j k l} q_{k}\left[q_{i}, p_{l}\right]=i \hbar \epsilon_{i j k} N_{k} \\
{\left[N_{i}, N_{j}\right] } & =\left[p_{i} t-m q_{i}, p_{j} t-m q_{j}\right]=-m t\left[p_{i}, q_{j}\right]-m t\left[q_{i}, p_{j}\right]=0 .
\end{aligned}
$$

These commutators correspond to the Lie algebra of the Galilei group. We notice that in our approach they arise as a consequence of the QAP (through the fundamental commutators between the canonical variables and the Heisenberg equation), and the fact that J, N, P are conserved quantities. This result extends the QAP far beyond the dynamical aspects of the theory, relating it to algebraic aspects too.

6 Conclusion

We presented an equivalent form for the QAP in which the boundary term arising from the variation of the action has the form $F=p_{i} \delta_{0} q_{i}-\delta_{0} p_{i} q_{i}$. The absence of the term depending on the Hamiltonian lead us to consider separately the unitary transformation $U=e^{\frac{i}{\hbar} H\left(t-t_{0}\right)}$ as the generator of time translations. One aspect that should be investigated is the case of systems in which the Hamiltonian contains the time explicitly. In some of these cases, quantum mechanics formalism assumes the time evolution is generated by an unitary operator not necessarily having the form $U=e^{-\frac{i}{\hbar} H\left(t-t_{0}\right)}$ but satisfying $U\left(t, t_{0}\right)=1-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} H\left(t^{\prime}\right) U\left(t^{\prime}, t_{0}\right)$. It remains to be investigated the extension of the QAP to this case.

In our work we considered systems without spin. One approach to describe spin is to add to the canonical variables $\left\{q_{i}, p_{i}\right\}$ extra fermionic coordinates, $\theta_{\alpha}, \pi_{\alpha}[5]$. The development of a QAP involving both bosonic and fermionic variables is expected to generate supersymmetric quantum mechanics, an area that can provide further applications of the QAP.

Finally, it may be possible to formulate the QAP in quantum field theory following an Hamiltonian formalism which generalizes our approach and whose form can be compared with the lagrangian formalism adopted by Schwinger in [2]. The analysis of the QAP to relativistic quantum fields will be presented in a forthcoming work.

Acknowledgements A.L.O is grateful to the Faperj for the financial aid. M.C. is thankful to FAPEU for the financial aid and thanks the support from Aurelina Carvalho, J.E.Carvalho, Aureliana Raposo, ICXC Nika.

References

[1] Schwinger, J.: Field theory of particles. In: Johnson et all (eds), Brandeis Summer Institute in Theoretical Physics, Lectures on Particles and Field Theory, pp.144. Englewood Cliffs, NJ,(1964)
[2] Schwinger, J.: The theory of quantized fields. Phys. Rev. 82, 914-927 (1951)
[3] Shaharir, M.Z.: The modified Hamilton-Schwinger action principle. J. Phys. A: Math., Nucl. Gen. 7, 553-562(1974)
[4] Hill, E. L.: Hamilton's principle and the conservation theorems of mathematical physics Rev. Mod. Phys. 23, 253-260 (1951);
Barbashov, B.M., Nesterenko, V.V.:Continuous Symmetries in Field Theory. Fortschr. Phys. 31 (1983) 10, 535-567
[5] Galvão, C.A.P., Teitelboim, C.: Classical supersymmetric particles. J. Mth. Phys. 21, 1863-1880 (1980).

[^0]: *e-mail: mcarvalho@mtm.ufsc.br
 ${ }^{\dagger}$ e-mail: alexandr@ov.ufrj.br

[^1]: ${ }^{1}$ This follows material presented in [2], section I.

[^2]: ${ }^{2}$ This section exhibits the same derivations of [1] but the results are presented in a different way as to facilitate the comparison of Schwinger's development with the one we present in section 3.

[^3]: ${ }^{3}$ Cf. [1], pg 154.

[^4]: ${ }^{4}$ We denoted $\frac{d F}{d q_{i}} \doteq \frac{\partial F}{\partial q_{i}}+\frac{\partial F}{\partial \delta_{0} q_{j}} \frac{\partial \delta_{0} q_{j}}{\partial q_{i}}+\frac{\partial \delta_{0} p_{j}}{\partial q_{i}} \frac{\partial F}{\partial \delta_{0} p_{j}}, \quad \frac{d F}{d p_{i}} \doteq \frac{\partial F}{\partial p_{i}}+\frac{\partial F}{\partial \delta_{0} q_{j}} \frac{\partial \delta_{0} q_{j}}{\partial p_{i}}+\frac{\partial \delta_{o} p_{j}}{\partial p_{i}} \frac{\partial F}{\partial \delta_{0} p_{j}}$.
 ${ }^{5}$ We use the same idea explicit in eq. (43) of taking $\bar{\delta}_{H} K$ associated to the commutator of K with the parameter δt.

[^5]: ${ }^{6}$ Since the transformation is unitary it doesn't affect the eigenvalues, therefore the only contribution is due to the time variation.

