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Abstract

We investigate the basic assumptions leading to Schwinger’s quantum action prin-
ciple in quantum mechanics. We present this principle in a new way that clarifies
some previous developments, e.g. the derivation of the fundamental commutators
among the canonical variables and the Heisenberg equation for operators. We define
operators associated to the classical transformations of the Galilei group, i.e. trans-
lations, boosts, and rotations and show their commutators obey the Lie algebra of
the Galilei group.

PACS: 83.65.Ca; 11.10.Ef

1 Introduction

Schwinger’s quantum action principle (QAP) in quantum mechanics was first presented

in [1] and followed the ideas of work originally developed in the context of relativistic

quantum field theory [2]. The basic idea of the QAP consists on taking a quantum action

W =
∫ t2
t1

dt Lq =
∫ t2
t1

dt (piq̇i−H(q, p, t)), defined in terms of operators, and to consider the

boundary term that comes from the variation of the action when we consider infinitesimal

variations δ0qi := q̃i(t)− qi(t), δ0pi := p̃i(t)− pi(t) in the functional form of the canonical

operators (examples of these transformations are given in section 5.1 for the cases of

translations, Galilean boosts and rotations). For the action given above one obtains as
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boundary term F = piδ0qi−Hδt, which Schwinger interpreted as the generator of unitary

transformations corresponding to the freedom of changing the descrition of a quantum

mechanical system. Further developments based on this interpretation of F determine the

form of the fundamental commutators as well as the Heisenberg equation for operators.

Despite its power on fixing several basic properties of quantum mechanical and relativistic

field systems, some of the derivations of the QAP are not clear and sometimes invoke

assumptions that are not contained in the QAP itself, therefore, leaving the impression

the principle is incomplete.

For example, as it is shown in [1], the derivation of the canonical commutators [qi, pj] =

ih̄δij, [qi, qj] = 0, [pi, pj] = 0 involves the use of the QAP twice, at one time taking for

action the form given above, and at another time taking for action W =
∫ t2
t1

dt Lp =∫ t2
t1

dt(ṗiqi − H(q, p, t)). Although the difference between the two lagrangians Lq and Lp

relies only on a total derivative, we cannot affirm that both actions will lead to the same

physical properties. In fact, this total derivative will appear as a boundary term in the

variation of the action giving a contribution to the generator F that may change the

description of the system.

Another development that is not clear refers to the derivation of the Heisenberg equa-

tion for operators. As the boundary term F is obtained from the infinitesimal variation

of an hermitian operator W , then F is both an hermitian and an infinitesimal operator

that depends on the infinitesimal variations δ0qi, δ0pi, δ0t. Therefore, F generates an in-

finitesimal unitary operator U = e
i
h̄

F and its inverse U−1 = e−
i
h̄

F that, as a first order

approximation in δ0qi, δ0pi, δ0t, write as U = 1 + i
h̄
F , U−1 = 1− i

h̄
F . The QAP assumes

that given an operator K(q, p, t), the infinitesimal unitary operator U = 1+ i
h̄
F induces a

change on K as δK = UKU−1−K = − i
h̄
[K, F ]. In order to obtain the Heisenberg equa-

tion for K it is assumed additionally in [1] that δK = −(dK
dt
− ∂K

∂t
)δ0t, however no proof

is given this relation is true in the general case. Another delicate point is the assumption

that the operator variations δq0, δp0 are functions rather than operators, an issue that

led to several investigations [3]. In our approach we are able to let δq0, δp0 be operators

at the cost of having extra transformations in our theory.

In our work we present a formulation of the QAP that solves the ambiguities mentioned

above and follows the general idea behind Schwinger’s QAP. The difference is in the choice

of the action and in the type of transformations we consider that will render a different

form for the boundary term. Another particular characteristic of our development is on

the role played by the Hamiltonian that appears independently of the generator F . Both

generators will be fundamental in defining unitary transformations in the space of states

from which we will be able to determine the fundamental commutators without ambiguity

and from a single action. The purpose of this work is to make a comparative study of the
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hypothesis that led Schwinger to formulate his QAP and the hypothesis that we use to

formulate our version of the QAP. We emphasize throughout the text where we deviate

from Schwinger construction and the new features that appear. We hope this may bring

a renewed interest on this subject.

Our work is organized as follows. In section 2 we review Schwinger’s development

of the QAP. Subsection 2.1 is devoted to the basics of unitary transformations in the

space of states and observables, a necessary tool to formulate the QAP. Subsection 2.2

reviews Schwinger’s derivation of the fundamental commutators and of the Heisenberg

equation for operators. In particular, we discuss those aspects which seem incomplete

and that demand assumptions besides the QAP itself. In section 3 we formulate a new

version of the QAP obtaining a boundary term F that differs from the one obtained by

Schwinger. We assume a consistency between composition of transformations generated

by F and H, thus obtaining the equations of motion for the canonical operators. Then

we analyze the structure of the transformation δF K generated by F on an operator K.

In section 4 we analyze the role of the Hamiltonian on the evolution of the system, and

we assume it induces on an operator K a transformation δHK having the same structure

as the one induced by F . As a result we obtain the Heisenberg equation of motion for K.

In section 5 we review symmetry transformations and analyze the conserved quantities

arising from Noether theorem. We specialize the transformation to the case of rotation,

boost, and translation obtaining the generators of each transformation. Then we show

their commutators obey the Lie algebra of the Galilei group.

2 The QAP in Quantum Mechanics

2.1 Transformation theory

1 Consider two operators A(t), B(t) and their corresponding eigenvectors |χA, t>, |χB, t>

in the Heisenberg representation. Let us perform unitary transformations on each operator

according to

A(t1) −→ Ã(t1) = UAA(t1)U
−1
A B(t2) −→ B̃(t2) = UBB(t2)U

−1
B

|χA, t1 >−→ |χ̃A, t1 >:= UA|χA, t1 > |χB, t2 >−→ |χ̃B, t2 >:= UB|χB, t2 > .
(1)

The transformation function <χB, t2|χA, t1 > changes as

<χ̃B, t2|χ̃A, t1 >=<χB, t2|U−1
B UA|χA, t1 > .

1This follows material presented in [2], section I.
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In the case of an infinitesimal transformation we write UA = 1 + i
h̄
FA, UB = 1 + i

h̄
FB,

hence

δ <χB, t2|χA, t1 > := <χ̃B, t2|χ̃A, t1 > − <χB, t2|χA, t1 >

= − i

h̄
<χB, t2|(FB − FA)|χA, t1 > (2)

δA = − i

h̄
[A, F ] . (3)

Knowledge of the transformation function < χB, t2|χA, t1 > allows us to determine the

dynamical aspects of the physical system. This is due to the fact that all quantities of

physical interest are ultimately related to amplitudes of this type. Here, we notice the

unitary transformation given in (1) doesn’t change the eigenvalue spectra of the operators,

however, it does change the transformation function unless we transform both operators

by the same unitary transformation, in which case we would have δ < χB, t2|χA, t1 >=

0. In the general case, equation (2) allows us to relate the effect of a change in the

transformation function, caused by an arbitrary change of eigenvectors, as the expectation

value of the operator − i
h̄
(FB−FA). A particular case of (1) is to consider transformations

generated by a family of unitary operators U(t) that, at the instant t, transforms all

observables in the same way, i.e. UA(t) = UB(t). Equation (2) then writes as

δ <χB, t2|χA, t1 >= − i

h̄
<χB, t2|(F (t2)− F (t1))|χA, t1 > (4)

The essence of the QAP is to find a form for the infinitesimal generators F (t2), F (t1)

from a dynamical principle.

2.2 The Schwinger QAP in Quantum Mechanics

2.2.1 The Schwinger formulation of the QAP

2 Let us consider a quantum mechanical system described by canonical variables {qi, pi}
and Hamiltonian H(qi, pi, t). We assume it exists a quantum action associated to the

system that writes as

W =
∫ t2

t1
dt L(qi(t), pi(t), q̇i(t), ṗi(t), t) . (5)

In the Heisenberg representation the operators qi, pi are time dependent. Therefore, in

order to consider independent variations of these quantities and the time t it is convenient

to introduce an independent parameter τ such that t = t(τ), qi(τ) = qi(t(τ)), pi(τ) =

pi(t(τ)).

2This section exhibits the same derivations of [1] but the results are presented in a different way as to
facilitate the comparison of Schwinger’s development with the one we present in section 3.
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Consider now infinitesimal variations in the functional form of these quantities

t(τ) −→ t̃(τ) = t(τ) + δ0t(τ)

qi(τ) −→ q̃i(τ) = qi(τ) + δ0qi(τ) (6)

pi(τ) −→ p̃i(τ) = pi(τ) + δ0pi(τ) (7)

where we allow δ0qi, δ0pi to be operators. In this case we have to set a prescription in

order to calculate δK(q, p, q̇, ṗ) for any operator K. We adopt the convention of placing

δ0p to the left of ∂K
∂p

and δ0q to the right of ∂K
∂q

(analogously for δ0ṗ, δ0q̇) whenever there is

ambiguity in the position of these operators, i.e. δK = ∂K
∂q

δ0q+δ0p
∂K
∂p

+ ∂K
∂q̇

δ0q̇+δ0ṗ
∂K
∂ṗ

.

We notice that

δ0
dt

dτ
=

dδ0t

dτ
, δ0

dτ

dt
= −dτ

dt

dδ0t

dt
(8)

and

δ0
dqi

dt
= δ0

(
dτ

dt

dqi(τ)

dτ

)
= −dδ0t

dt

dqi

dt
+

dδ0qi

dt

δ0
dpi

dt
= δ0

(
dτ

dt

dpi(τ)

dτ

)
= −dδ0t

dt

dpi

dt
+

dδ0pi

dt

then we obtain

δ0L
(
qi(τ), pi(τ),

dτ

dt

dqi(τ)

dτ
,
dτ

dt

dpi(τ)

dτ
, τ

)
=

(
∂L

∂qi

− d

dt

∂L

∂q̇i

)
δ0qi + δ0pi

(
∂L

∂pi

− d

dt

∂L

∂ṗi

)
+

+
[
∂L

∂t
+

d

dt

(
∂L

∂q̇i

q̇i

)
+

d

dt

(
ṗi

∂L

∂ṗi

)]
δ0t +

d

dt

(
∂L

∂q̇i

(δ0qi − q̇iδ0t) + (δ0pi − ṗiδ0t)
∂L

∂ṗi

)
. (9)

In terms of τ we write

W =
∫ τ2

τ1
dτ

dt

dτ
L

(
qi(τ), pi(τ),

dτ

dt

dqi(τ)

dτ
, τ

)
and using (8, 9) its variation gives

δW =
∫ t2

t1
dt

{[
∂L

∂t
− dL

dt
+

d

dt

(
∂L

∂q̇i

q̇i + ṗi
∂L

∂ṗi

)]
δ0t +

(
∂L

∂qi

− d

dt

∂L

∂q̇i

)
δ0qi +

+δ0pi

(
∂L

∂qi

− d

dt

∂L

∂ṗi

)}
+

(
L δ0t +

∂L

∂q̇i

(δ0qi − q̇iδ0t) + (δ0pi − ṗiδ0t)
∂L

∂ṗi

)∣∣∣∣∣
t2

t1

.(10)

The QAP imposes that δW depends only on contributions arising from the boundary, i.e.

δW ≡ F (t2)− F (t1) =
(
L δ0t +

∂L

∂q̇i

(δ0qi − q̇iδ0t) + (δ0pi − ṗiδ0t)
∂L

∂ṗi

)∣∣∣∣∣
t2

t1

from which we identify the generator of canonical transformations of the system as

F (t) := L δ0t +
∂L

∂q̇i

(δ0qi − q̇iδ0t) + (δ0pi − ṗiδ0t)
∂L

∂ṗi

. (11)
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The remaining part we impose to be zero. Due to the arbitrariness of the variations

δ0t, δ0qi, δ0pi we obtain

∂L

∂t
− dL

dt
+

d

dt

(
∂L

∂q̇i

q̇i + ṗi
∂L

∂ṗi

)
= 0 (12)

∂L

∂qi

− d

dt

∂L

∂q̇i

= 0,
∂L

∂pi

− d

dt

∂L

∂ṗi

= 0 (13)

Using (13) we note the first equation is in fact equivalent to the operator identity

dL

dt
=

∂L

∂t
+

∂L

∂qi

q̇i +
∂L

∂q̇i

q̈i + ṗi
∂L

∂pi

+ p̈i
∂L

∂ṗi

.

Some remarks:

(i) Equation (11) incorporates the form of the generator F for the three quantum la-

grangians analysed by Schwinger in [2]: Lq = pkq̇k−H(qk, pk, t), Lp = −ṗkqk−H(qk, pk, t)

and L = 1
2
(Lq + Lp).

(ii) It it is possible to work directly with the paremeter t instead of using the parameter

τ . In order to obtain (10) we should take the transformations of t, qk(t), pk(t), q̇k(t), ṗk(t)

as

t −→ t̃ = t + δ0t(t)

qi(t) −→ q̃i(t) = qi(t) + δ0qi(t)

pi(t) −→ p̃i(t) = pi(t) + δ0pi(t)

dqi(t)

dt
−→ dq̃i(t)

dt̃
=

dqi(t)

dt
+ δ0

dqi(t)

dt
dpi(t)

dt
−→ dp̃i(t)

dt̃
=

dpi(t)

dt
+ δ0

dpi(t)

dt
.

The variations δ0
dqi(t)

dt
and δ0

dpi(t)
dt

agree with the previous ones, in fact

δ0
dqi(t)

dt
:=

dq̃i(t)

dt̃
− dqi(t)

dt
=

dt

dt̃

dq̃i(t)

dt
− dqi(t)

dt
=

(
1− dδ0t

dt̃

)
dq̃i(t)

dt
− dqi(t)

dt
=

=
dδ0qi(t)

dt
− dδ0t

dt̃

dq̃i(t)

dt
=

dδ0qi(t)

dt
− dδ0t

dt

dqi(t)

dt
(14)

where the last equality is established as a first order approximation in δ0t, δ0qi. It is

important to notice that although we allow for a variation of the parameter t, we keep t

fixed when it appears as the argument of qi, pi, q̇i, ṗi. The use of the parameter τ is is just

an alternative way to ensure this transformation for δ0
dqi(t)

dt
and the analogue for δ0

dpi(t)
dt

.

2.2.2 Some derivations from the Schwinger QAP

(1) The Heisenberg equation of motion for operators

Let us choose Lq = piq̇i −H(qi, pi, t). From (11) we obtain

F (t) = piδ0qi −Hδ0t . (15)
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The unitary transformation U = 1 + i
h̄
F (t) acts on an operator K(qi, pi, t) according to

(3),

δK = − i

h̄
[K, F ] = − i

h̄
[K, piδ0qi] +

i

h̄
[K, H]δ0t (16)

Let us consider δ0qi = 0. Then (15,16) become

F = −Hδ0t (17)

δK =
i

h̄
[K, H]δ0t (18)

In this case where F = −Hδ0t and in order to obtain the Heisenberg equation for the

operator, Schwinger assumes that 3 δK corresponds to the negative change of K owing to

its implicit or dynamical dependence on t, i.e.

δK = −
(

dK

dt
− ∂K

∂t

)
δ0t (19)

or in a equivalent way

δK = K(qi(t− δ0t), pi(t− δ0t), t)−K(qi(t), pi(t), t) [induced byF = −Hδ0t] (20)

This gives the Heisenberg equation

dK

dt
=

∂K

∂t
− i

h̄
[K, H] . (21)

Schwinger gives no proof of the general validity of relation (20), henceforth it must be

considered as an additional prescription to the QAP.

Remark: Taking K(qi(t), pi(t), t) = qi(t) and K(qi(t), pi(t), t) = pi(t) in (20) we obtain

δqi(t) = qi(t− δ0t)− qi(t) = −q̇iδ0t .

δpi(t) = pi(t− δ0t)− pi(t) = −ṗiδ0t
(22)

From the three basic variations associated to the operator qi(t) [4]

δ0qi(t) := q̃i(t)− qi(t) (variation in the functional form)

δqi(t) := qi(t + δ0t)− qi(t) (the point variation)

δT qi(t) := q̃i(t + δ0t)− qi(t) = δ0qi(t) + δqi(t) (the total variation)

we conclude that (in this case when one takes F = −Hδ0t) δqi(t) differs from δ0qi(t),

δqi(t), and δT qi(t). Therefore, δqi should be interpreted as a new variation induced by

F = −Hδ0t. The same applies to δpi.

3Cf. [1], pg 154.
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(2) The commutators [qi, pj], [pi, pj], [qi, qj]

Let us choose again Lq = pj q̇j −H(qj, pj, t). Consider δ0t = 0. Then (15, 16) become

F (t) = pjδ0qj

δK = − i

h̄
[K, pjδ0qj]

At this point, Schwinger obtains part of the fundamental commutators by assuming that

δ0qj is a function rather than an operator. This allow us to write

δK = − i

h̄
[K, pj]δ0qj . (23)

Taking the particular case of K = qi we obtain

δqi = − i

h̄
[qi, pj]δ0qj (24)

that is a relation between two unknown quantities: δqi and the commutator [qi, qj]. In

order to determine the commutator [qi, pj] Schwinger assumes that δqi = δ0qi. Then, we

have

[qi, pj] = ih̄δij . (25)

By a similar argument, taking K = pi we obtain

[pi, pj] = 0 . (26)

It remains to determine the commutator [qi, qj]. This time we consider the action as

Lp = −ṗjqj −H(qj, pj, t). From (11) we get

F (t) = −δ0pj qj −Hδ0t .

Taking δ0t = 0 and repeating the same development we obtain the commutator [qi, qj] = 0.

Remark: We assumed δqi = δ0qi. By definition of δ0qi we obtain δqi(t) = q̃i(t) − qi(t).

Since (24) is a particular case of (23) with K(qi(t), pi(t), t) = qi(t), we have

δqi(t) = q̃i(t)− qi(t) ⇒ δK(qi(t), pi(t), t) ≡ K(q̃i(t), pi(t), t)−K(qi(t), pi(t), t) (27)

[induced byF = pi δ0qi]

that establishes the definition of δK induced by F = pi δ0qi. A similar argument applies

to δpi(t) which gives

δK(qi(t), pi(t), t) ≡ K(qi(t), p̃i(t), t)−K(qi(t), pi(t), t) [induced byF = −δ0pi qi] (28)
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As we finish this review of Schwinger’s QAP, we emphasize the following points:

(i) The variations δ0qi, δ0pi are functions rather than operators. This assumption is nec-

essary to establish the commutators. The possibility to have a more general situation

force us to consider δ0qi, δ0pi as operators.

(ii) The commutators are derived using a particular form for the generator F with

δ0t = 0. This suggests us to look for an action and transformations of qk, pk that re-

sults on F = piδ0qi and F = −δ0pj qj directly from the beginning. The fact of using two

different Lagrangians to obtain the commutators indicates that it may be necessary to

incorporate the two Lagrangians Lq and Lp into a single action.

(iii) The derivation of the Heisenberg equation for operators assumes a particular form

F = −Hδ0t. This suggests us to consider the Hamiltonian as a separated generator.

(iv) Equations (20, 27, 28) fix the variation δK for different choices of F and. These cases

assume that δ0qi, δ0pi weren’t operators. What will happen to δK if we allow δ0qi, δ0pi to

be operators?

3 A new formulation of the QAP in quantum me-

chanics

3.1 Establishing the QAP

In this section we intend to present the QAP in a way that incorporates the observa-

tions made in (i)-(iv). Again, let us consider a quantum mechanical system described by

canonical variables {qi, pi} with Hamiltonian H(qi, pi, t). In order to keep the discussion

as simple as possible and to avoid non-essential complications due to spin we assume that

all observables can be written in terms of these fundamental operators. Let us suppose

that the initial and final configurations of the system happen at instants t1, t2. We state

the QAP as follows: There exists a functional of the canonical variables defined by

W ≡
∫ t2

t1
dt

(
piq̇i − ṗiqi − 2H(q, p, t)

)
(29)

such that under a transformation of the canonical variables (δ0qi, δ0pi being operators)

qi(t) −→ q̃i(t) := qi(t) + δ0qi(t)

pi(t) −→ p̃i(t) := pi(t) + δ0pi(t)
(30)

it transforms as δW = F (t2) − F (t1). This quantity is related to the variation of the

amplitude <χB, t2|χA, t1 > by

δ <χB, t2|χA, t1 >:= − i

h̄
<χB, t2|δW |χA, t1 > (31)

9



where F (t1) and F (t2) are generators of unitary transformations acting on the states

|χA, t1 > and |χB, t2 >.

From (30) we have

δW =
(
pi δ0qi − δ0pi qi

)∣∣∣∣t2
t1

+ 2
∫ t2

t1
dt

(
− ṗi δ0qi + δ0pi q̇i −

∂H

∂qi

δ0qi − δ0pi
∂H

∂pi

)
.

Assuming the QAP we must have δW = F (t2)− F (t1). Therefore, we identify

F (t) = pi δ0qi − δ0pi qi

∣∣∣∣
t
. (32)

The QAP fixes the remaining part as zero i.e.∫ t2

t1
dt

(
− ṗi δ0qi + δ0pi q̇i −

∂H

∂qi

δ0qi − δ0pi
∂H

∂pi

)
= 0

and since the variations δ0qi, δ0pi are arbitrary we must have

∂H

∂qi

= −ṗi,
∂H

∂pi

= q̇i . (33)

Consider now

H(q, +δ0q, p + δ0p, t + δt)−H(q, p, t) =
∂H

∂qi

δ0qi + δ0pi
∂H

∂pi

+
∂H

∂t
δt.

Taking the particular case of variations δ0qi = q̇iδt, δ0pi = ṗiδt and using (33) we have

dH

dt
=

∂H

∂t
. (34)

The boundary term we obtained in (32) differs from the one derived by Schwinger, e.g.

F = piδ0qi−Hδ0t, in that we do not have any contribution arising from the Hamiltonian.

The reason is that we do not consider time transformations in (30). This separation of

the Hamiltonian from the generator F suggest the time evolution of states is generated

by H alone.

Now, we should check the consistency between unitary transformations generated by

F and H. Let us consider a time independent Hamiltonian (i.e. ∂H
∂t

= 0) and the following

transformations

|χ, t>
e

i
h̄

F (t)

−→ |χ̃, t>= e
i
h̄

F (t)|χ, t>, |χ, t0 >
e

i
h̄

H(t−t0)

−→ |χ, t>= e
i
h̄

H(t−t0)|χ, t0 > .

Consistency requires that

|χ, t0 >
e

i
h̄

H(t−t0)

−→ |χ, t>
e

i
h̄

F (t)

−→ |χ̃, t>

|χ, t0 >
e

i
h̄

F (t0)

−→ |χ̃, t0 >
e

i
h̄

H(t−t0)

−→ |χ̃, t>

10



i.e.

e
i
h̄

F (t) = e
i
h̄

H(t−t0)e
i
h̄

F (t0)e−
i
h̄

H(t−t0) .

For an infinitesimal transformation with δt = t−t0 this gives F (t) = F (t0)+
i
h̄

δt[H, F (t0)],

or equivalently

dF

dt
= − i

h̄
[F, H] .

Using (32), the previous equation can be rewritten as

ṗi δ0qi + pi δ0q̇i − δ0ṗi qi − δ0pi q̇i = − i

h̄
[pi, H]δ0qi −

i

h̄
pi[δ0qi, H] +

i

h̄
δ0pi[qi, H] +

i

h̄
[δ0pi, H]qi

which gives

q̇i = − i
h̄
[qi, H], ṗi = − i

h̄
[pi, H]

δ0 q̇i = − i
h̄
[δ0qi, H], δ0 ṗi = − i

h̄
[δ0pi, H] .

(35)

The commutators involving the variations δ0qi, δ0pi are in general different from zero, a

fact that is only possible by assuming them to be operators. Another condition arises

when we consider q̇i = − i
h̄
[qi, H] and take the variation δ0 directly from this relation:

δ0q̇i = − i
h̄
[δ0qi, H]− i

h̄
[qi, δ0H], that gives

[qi, δ0H] = 0 . (36)

Analogously we obtain

[pi, δ0H] = 0 . (37)

These equations are consistency conditions to be satisfied by the variations δ0qi, δ0pi. It

becomes clear that the choice of the Hamiltonian restrict the type of transformations (30)

we can consider for the system.

In Schwinger’s original formulation [1], the variations δ0qi, δ0pi were assumed to com-

mute with the canonical variables. Therefore, the equations he obtains is δ0q̇i = − i
h̄
[qi, δ0H],

δ0ṗi = − i
h̄
[pi, δ0H] which differs from ours. Consistency conditions (36, 37) are absent in

Schwinger’s formulation and appear here due to the operator character of the variations

δ0q, δ0p.

3.2 The fundamental commutators

We have not determined yet any fundamental commutators among the canonical variables,

therefore, the previous equations do not establish any dynamical aspect of the model.

11



We assume the generator F induce an infinitesimal transformation on the canonical

variables qi(t), pi(t) that we write as δF qi ≡ δF qi + δ0qi, δF pi ≡ δF pi + δ0pi. As we will see

below, the additional terms δF qi, δF pi are required in order to garantee the consistency of

the formalism in the case δ0qi, δ0pi are operators.

In order to fix the fundamental commutators, let us consider the action of the generator

F on an operator K(q, p, t). Since F = pi δ0qi−δ0pi qi doesn’t depend on t, it is reasonable

to assume from (27, 28) that

δF K(q, p, t) := K̃(q + δ0q, p + δ0p, t)−K(q, p, t) ≡ δF K + δ0K (38)

where

δ0K :=
∂K

∂qi

δ0qi + δ0pi
∂K

∂pi

(39)

δF K := K̃(q, p, t)−K(q, p, t) (40)

with δF K referring to an arbitrary change in the functional form of the operator K. Also,

δF K ≡ UKU−1 −K = − i

h̄
[K, F ] . (41)

From (38,41) we obtain the following equation

δF K +
∂K

∂qi

δ0qi + δ0pi
∂K

∂pi

= − i

h̄
[K, pi]δ0qi −

i

h̄
pi[K, δ0qi] +

i

h̄
δ0pi[K, qi] +

i

h̄
[K, δ0pi]qi

which gives

∂K

∂qi

= − i

h̄
[K, pi],

∂K

∂pi

=
i

h̄
[K, qi] (42)

δF K =
i

h̄
[K, δ0pi] qi −

i

h̄
pi [K, δ0qi] . (43)

We see from (43) that δF K is determined by the commutators of K with the operators

δ0qi, δ0pi. In particular, taking for K the qk and pk in (41) we obtain the commutator

relations

[qi, pj] = ih̄ δij, [qi, qj] = [pi, pj] = 0 (44)

and δF qi = i
h̄

[qi, δ0pj] qj − i
h̄

pj [qi, δ0qj], δF pi = i
h̄

[pi, δ0pj] qj − i
h̄

pj [pi, δ0qj]. Placing K

as δ0q, δ0p into (42) we obtain

δF qi = −∂δ0pj

∂pi

qj + pj
∂δ0qj

∂pi

, δF pi =
∂δ0pj

∂qi

qj − pj
∂δ0qj

∂qi

(45)

12



that works as an alternative definition for δF qi, δF pi. From (32) we write 4

δF qi = dF
dpi
− δ0qi =⇒ δF qi = dF

dpi

δF pi = − dF
dqi
− δ0pi =⇒ δF pi = − dF

dqi

(46)

which resembles equations (33) with H in place of F . It should be noticed that the effect of

the generator F on the canonical variables is to produce a change δF q = δF q + δ0q, δF p =

δF p + δ0p, that adds contributions δF q, δF p to the original arbitrary variations δ0q, δ0p.

Equation (38) is an assumption we have to make in order to calculate the fundamental

commutators. It gives the response of K(q, p, t) to the action of the generator F . It has

the same role as the assumption made by Schwinger that δK = −(dK
dt
− ∂K

∂t
)δt, although

the contents of one and another are quite different.

4 The Dynamical Evolution of the System and the

Hamiltonian

4.1 The Heisenberg equation of motion for an operator

We consider now the role of the Hamiltonian on the dynamics of the system. Let us

extend the previous construction considering F = Hδt, i.e. we assume the generator

Hδt induce an infinitesimal transformation on the canonical variables that we write as

δHq = δHq + δtq, δHp = δHp + δtp. The form of this transformation will be fixed below.

Given an operator K, in analogy with (41), we assume it transforms under the action

of the generator H as

δHK = − i

h̄
[K, Hδt] (47)

with (20) suggesting us to write δHK = K̃(q + δtq, p + δtp, t) −K(q, p, t) ≡ δHK + δtK

with δHK and δtK defined as in (39,40)

δtK :=
∂K

∂qi

δtqi + δtpi
∂K

∂pi

(48)

δHK := K̃(q, p, t)−K(q, p, t) . (49)

Thus we obtain 5

δHK(q, p, t) +
∂K

∂qi

δtqi + δtpi
∂K

∂pi

= − i

h̄
[K, H]δt− i

h̄
H[K, δt]

4We denoted dF
dqi

.= ∂F
∂qi

+ ∂F
∂δ0qj

∂δ0qj

∂qi
+ ∂δ0pj

∂qi

∂F
∂δ0pj

, dF
dpi

.= ∂F
∂pi

+ ∂F
∂δ0qj

∂δ0qj

∂pi
+ ∂δ0pj

∂pi

∂F
∂δ0pj

.
5We use the same idea explicit in eq. (43) of taking δHK associated to the commutator of K with

the parameter δt.
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or

∂K

∂qi

δtqi + δtpi
∂K

∂pi

= − i

h̄
[K, H]δt (50)

δHK(q, p, t) = − i

h̄
H[K, δt]

Now, since the variation δt is not an operator we obtain δHK = δHq = δHp = 0. Taking

K = q in (47) and using (35) we have δtqi = − i
h̄
[qi, H]δt = q̇iδt. Analogously, δtpi = ṗiδt.

Replacing these values into (50) we obtain the Heisenberg equation for the operator

dK

dt
=

∂K

∂t
− i

h̄
[K, H] . (51)

A final consistency check consists to put K = H into (47), which gives δtH = − i
h̄
[H, H]δt =

0. Also, by definition we have δtH := ∂H
∂qi

δtqi + δtpi
∂H
∂pi

= −ṗiq̇iδt + ṗiδtq̇i = 0 upon using

(33). Finally, we notice that

δHqi = δHqi + δtqi = q̇iδt =
∂H

∂pi

δt

δHpi = δHpi + δtpi = ṗiδt = −∂H

∂qi

δt

that is consistent with (46) upon the identification Ft = Hδt.

4.2 The Heisenberg equation for the q-eigenstates

As an application of the previous development let us consider the position eigenstates

|q, t>. Considering Ft = Hδt we have δH |q, t>= i
h̄

δtH|q, t>. We develop δH |q, t> as 6

δH |q, t>:= |q, t + δt> −|q, t>= δt
∂

∂t
|q, t> .

Then we get

∂

∂t
|q, t>=

i

h̄
H|q, t> (52)

In Schwinger’s approach [1], equation (52) is obtained in a quite different manner, as it

follows from F = piδ0qi −Hδt and δ|q, t>= − i
h̄
F |q, t>= i

h̄
(piδ0qi −Hδt)|q, t> . Then, if

δ0qi is a c-number, together with δt, in Schwinger’s formalism one can formally calculate

the functional derivatives δ
δqi
|q, t>, δ

δt
|q, t>, this last one we associate to equation (52).

6Since the transformation is unitary it doesn’t affect the eigenvalues, therefore the only contribution
is due to the time variation.
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5 Symmetry Transformations and Conserved Quan-

tities

5.1 Noether Theorem

We analyze now symmetry transformations and the associated conserved quantities. We

will follow the same development as [4] adapted to an Hamiltonian formalism. Let us

denote w = piq̇i − ṗiqi − 2H(q, p) and take

W [q(t), p(t), q̇(t), ṗ(t), t] =
∫

dtw(q(t), p(t), q̇(t), ṗ(t)) .

We submit the canonical variables and the time to arbitrary transformations of the type

t → t′ = t + δt

qi → q′i(t
′) = qi(t) + δqi(t)

pi → p′i(t
′) = pi(t) + δpi(t)

(53)

that are related to δ0qi, δ0pi by

δqi(t) = δ0qi(t) + q̇i(t)δt, δpi(t) = δ0pi(t) + ṗi(t)δt .

Another useful relation is

δ
dqi

dt
=

dδqi

dt
− dδt

dt

dqi

dt
, δ

dpi

dt
=

dδpi

dt
− dδt

dt

dpi

dt
.

In addition to transformations (53) we also consider an arbitrary change on the functional

form of w(q, p) that is independent on the functional changes of the canonical variables

and keeps the equations of motion invariant, e.g. w(q, p) → w(q, p) + Ω̃(q, p). The

only possibility comes from a functional change on the Hamiltonian, H → H ′ = H +

Ω(q, p) (Ω̃ ≡ −2Ω) . In terms of this modified Hamiltonian H ′ the equations of motion

write as q̇i = i
h̄
[qi, H

′] = i
h̄
[qi, H + Ω], ṗi = i

h̄
[pi, H

′] = i
h̄
[pi, H + Ω] which stay

invariant if [qi, Ω(q, p)] = [pi, Ω(q, p)] = 0, that gives Ω(q, p) constant, which we can

ignore. Transformations (53) are a symmetry transformation [4] if

W ′[q′(t′), p′(t′), q̇′(t′), ṗ′(t′), t′] = W [q(t), p(t), q̇(t), ṗ(t)]

which gives∫
dt

{
d

dt

(
pi δqi − δpi qi − 2Hδt

)
− 2

(
ṗi +

∂H

∂qi

)
δqi + 2δpi

(
q̇i −

∂H

∂pi

)
+ 2

(
dH

dt
− ∂H

∂t

)
δt

}
= 0

Using the equations of motion we obtain

d

dt

(
pi δqi − δpi qi − 2Hδt

)
= 0
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and from this we write the corresponding conserved quantity

Q(t) = pi δqi − δpi qi − 2Hδt . (54)

Let us consider transformations of the canonical variables that corresponds to infinitesimal

translations, rotations and boosts. Their effect on the canonical variables is

qi → q′i = qi + δai + (δω × q)i + δvit

pi → p′i = pi + (δω × p)i + mδvi

Let us consider the particular cases:

(i) Boosts: δqi := δvit, δpi := mδvi. The conserved current is Q(t) = (pit − mqi)δvi

and the boost generators are identified as Ni := pit−mqi with dQ(t)
dt

= 0 ⇒ dNi

dt
= 0.

(ii) Rotations: δqi := εijkδωj qk, δpi := εijkδωj pk. The conserved current is Q(t) =

2εijkqjpkδωi and the rotation generators are Ji = εijkqjpk with dJi

dt
= 0.

(iii) Translations: δqi := δai, δpi := 0. The conserved current is Q(t) = piδai and the

translation generators are Pi = pi with dPi

dt
= 0.

5.2 Galilei algebra

We analyze now the commutators between the generators ~P , ~J, ~N, H for the case of a

massive spinless particle. Using the Heisenberg equation for operators (51) we obtain

[Pi, H] = ih̄
(

d

dt
− ∂

∂t

)
Pi = −ih̄

∂Pi

∂t
= −ih̄

∂pi

∂t
= 0

[Ji, H] = ih̄
(

d

dt
− ∂

∂t

)
Ji = −ih̄

∂Ji

∂t
= −ih̄

∂(εijkqjpk)

∂t
= 0

[Ni, H] = ih̄
(

d

dt
− ∂

∂t

)
Ni = −ih̄

∂Ni

∂t
= −ih̄

∂(pit−mqi)

∂t
= −ih̄pi = −ih̄Pi .

The other relations follow from the fundamental commutators (44)

[Pi, Pj] = [pi, pj] = 0

[Ji, Pj] = [εiklqkpl, pj] = εikl[qk, pj]pl = ih̄εijlpl = ih̄εijlPl

[Ni, Pj] = [pit−mqi, pj] = −ih̄mδij

[Ji, Jj] = ih̄εijkJk

[Ni, Jj] = [pit−mqi, εjklqkpl] = εjklt[pi, qk]pl −mεjklqk[qi, pl] = ih̄εijkNk

[Ni, Nj] = [pit−mqi, pjt−mqj] = −mt[pi, qj]−mt[qi, pj] = 0 .

These commutators correspond to the Lie algebra of the Galilei group. We notice that in

our approach they arise as a consequence of the QAP (through the fundamental commu-

tators between the canonical variables and the Heisenberg equation), and the fact that

J, N, P are conserved quantities. This result extends the QAP far beyond the dynamical

aspects of the theory, relating it to algebraic aspects too.
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6 Conclusion

We presented an equivalent form for the QAP in which the boundary term arising from

the variation of the action has the form F = piδ0qi − δ0piqi. The absence of the term

depending on the Hamiltonian lead us to consider separately the unitary transformation

U = e
i
h̄

H(t−t0) as the generator of time translations. One aspect that should be investigated

is the case of systems in which the Hamiltonian contains the time explicitly. In some

of these cases, quantum mechanics formalism assumes the time evolution is generated

by an unitary operator not necessarily having the form U = e−
i
h̄

H(t−t0) but satisfying

U(t, t0) = 1 − i
h̄

∫ t
t0

dt′ H(t′)U(t′, t0). It remains to be investigated the extension of the

QAP to this case.

In our work we considered systems without spin. One approach to describe spin is to

add to the canonical variables {qi, pi} extra fermionic coordinates, θα, πα [5]. The devel-

opment of a QAP involving both bosonic and fermionic variables is expected to generate

supersymmetric quantum mechanics, an area that can provide further applications of the

QAP.

Finally, it may be possible to formulate the QAP in quantum field theory following an

Hamiltonian formalism which generalizes our approach and whose form can be compared

with the lagrangian formalism adopted by Schwinger in [2]. The analysis of the QAP to

relativistic quantum fields will be presented in a forthcoming work.
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