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We present twomodels combining some aspects of theGalilei and the Special relativities that lead to a unification of both relativities.
This unification is founded on a reinterpretation of the absolute time of the Galilei relativity that is considered as a quantity in
its own and not as mere reinterpretation of the time of the Special relativity in the limit of low velocity. In the first model, the
Galilei relativity plays a prominent role in the sense that the basic kinematical laws of Special relativity, for example, the Lorentz
transformation and the velocity law, follow from the corresponding Galilei transformations for the position and velocity. This first
model also provides a new way of conceiving the nature of relativistic spacetime where the Lorentz transformation is induced by
the Galilei transformation through an embedding of 3-dimensional Euclidean space into hyperplanes of 4-dimensional Euclidean
space. This idea provides the starting point for the development of a second model that leads to a generalization of the Lorentz
transformation, which includes, as particular cases, the standard Lorentz transformation and transformations that apply to the case
of superluminal frames.

1. Introduction

It is common to consider the Galilei relativity as the low
velocity limit case of the Special relativity (SR). This is
revealed by the behavior of the Lorentz transformation when
we take V/𝑐 → 0; for example,

�⃗�

= �⃗� − (1 − 𝛾)

�⃗� ⋅ V⃗

V2
V⃗ − 𝛾V⃗𝑡 → �⃗�


= �⃗� − V⃗𝑡,

𝑡

= 𝛾(𝑡 −

�⃗� ⋅ V⃗

𝑐2
) → 𝑡


= 𝑡.

(1)

In this view, the absolute time of the Galilei relativity,
henceforth denoted by 𝜏, is not considered as an independent
quantity but it refers to a particular situation of SR when it is
possible to identify 𝑡 and 𝑡, which allows us to take 𝜏 ≡ 𝑡 = 𝑡

.
It is in this sense that the absolute time is usually conceived.
Therefore, the fact that one generally has 𝑡 ̸= 𝑡 seems to deny
the possibility of having an absolute time in SR. We refer to
the time of the SR as the physical time.

In our work we intend to reinterpret the notion of
absolute time in such a way that the Galilei relativity recovers

its role as a theory in its own, correcting then a common
view that treats the principles of the Galilei and the Special
relativities as irreconcilable notions. One of the difficulties
we encounter to carry out this goal is related to the way we
currently understand the concept of time, which is somehow
already shaped by ideas of the SR. Here, we focus our efforts
on the development of two models, called models I and II,
that are built in order to allow to introduce the concept of
absolute time in a general setup that also incorporates the
concept of time of SR.

Inmodel I, the fact that 𝑡 ̸= 𝑡
 suggest us not to identify the

absolute time with 𝑡 but with a function depending on 𝑡 and,
perhaps, on the spatial location where the event occurred.
Then, if for a certain instant 𝜏 we have (𝑡, �⃗�), (𝑡, �⃗�) repre-
senting the same event with respect to two inertial frames, we
would expect the absolute character of 𝜏 to imply that 𝜏(𝑡, �⃗�) =
𝜏(𝑡

, �⃗�

), with this expression being verified for any value of

the ratio V/𝑐. In addition, we would also expect to obtain the
Lorentz transformation by replacing 𝜏(𝑡, �⃗�) into the Galilei
law �⃗�

= �⃗� − V⃗𝜏. Having established this, the next step would

be to obtain the velocity law of SR from the corresponding
velocity law of the Galilei relativity, 𝑑�⃗�/𝑑𝜏 = (𝑑�⃗�/𝑑𝜏) − V⃗.
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The fulfillment of these two laws places the Galilei relativity
as a guiding principle for deriving some of the SR laws.

From a calculational perspective, the Lorentz transfor-
mation can be obtained by considering as variables the set
{𝑡, �⃗�, 𝑡


, �⃗�

}, together with the equation �⃗�

2
− 𝑐
2
𝑡
2

= �⃗�
2
−

𝑐
2
𝑡
2. In model I, we will show that in order to combine the

Galilei and the Special relativities, it is sufficient to enlarge
the variables’ set of SR to {𝑡, �⃗�, 𝑡


, �⃗�

, 𝜏} and to consider the

pair of equations

�⃗�
2
− 𝑐
2
𝑡
2
= �⃗�
2
− 𝑐
2
𝑡
2
,

�⃗�

= �⃗� − V⃗𝜏.

(2)

Here, the effect of this enlargement is to produce not only
the usual Lorentz transformation, but also an extra equation
relating the absolute and the physical time, which gives an
operational definition for the absolute time associated to the
occurrence of an event.

In what concerns the structure of spacetime, we notice
that both relativities are formulated in terms of a 4-
dimensional space R4 ≡ R × R3. In the Galilei view, two
observers belonging to inertial frames 𝑆, 𝑆 describe the
occurrence of an event, respectively, as a point (𝜏, �⃗�) ∈ R

𝑆
×

R3
𝑆
≡ R4
𝑆
and (𝜏, �⃗�) ∈ R

𝑆
×R3
𝑆
 ≡ R4
𝑆
 . Here, due to the nature

of the absolute time, for a fixed 𝜏, the Galilei transformation
reduces itself to a map R3

𝑆
→ R3
𝑆
 .

In the SR view, the observers describe the event as a point
(𝑡, �⃗�) ∈ R

𝑆
× R3
𝑆
, and (𝑡


, �⃗�

) ∈ R

𝑆
 × R3
𝑆
 where now, due to

the nature of the physical time, the Lorentz transformation
is not restricted to be a map R3

𝑆
→ R3

𝑆
 as before, but it

is considered as a map on the whole space, R4
𝑆

→ R4
𝑆
 . In

model I, the existence of the absolute time allows us to unveil
an additional structure present in the SR spacetime that is
already present in the Galilei view. In fact, when we express
the absolute time in terms of the physical time, 𝜏(𝑡), 𝜏(𝑡),
we will show that we can define embeddings R3

𝑆

𝑖
𝜏

→ R4
𝑆
,

R3
𝑆


𝑖


𝜏

→ R4
𝑆
 in terms of certain hyperplanes𝜎

𝜏
⊂ R4
𝑆
,𝜎
𝜏
⊂ R4
𝑆
 .

The Lorentz transformation is then seen as a map 𝜎
𝜏
→ 𝜎


𝜏

between these 3-dimensional hyperplanes that is induced by
the Galilei transformation acting onR3

𝑆
→ R3
𝑆
 , for a certain

𝜏. Therefore, we may see the spacetime as the union of these
hyperplanes, for example, R4

𝑆
= ∪
𝜏
𝜎
𝜏
. In the spacetime of

Galilei relativity this splitting is self-evident and corresponds
to the hyperplanes of 𝜏 = constant.

Inspired by the equation that defines the embeddings

R3
𝑆

𝑖
𝜏

→ R4
𝑆
, R3
𝑆


𝑖


𝜏

→ R4
𝑆
 , we develop model II by taking

𝛼𝑥
0
− ⃗𝛽 ⋅ �⃗� = 𝛼𝑥

0
+ ⃗𝛽 ⋅ �⃗�

 as our fundamental equation,
where𝛼, ⃗𝛽 are arbitrary parameters that will allowus to define
a generalization of the Lorentz transformation. In model II,
the absolute time is introduced by modifying the previous
equation to

𝜏 ≡ 𝛼𝑥
0
− ⃗𝛽 ⋅ �⃗� = 𝛼𝑥

0
+ ⃗𝛽 ⋅ �⃗�


. (3)

Here, the Galilei relativity arises assuming in addition the
relation �⃗�


= �⃗� − V⃗𝜏. This is sufficient to reduce the gener-

alized transformation to the particular form of the standard

Lorentz transformation, showing then the consistency of
both relativities. In model II, however, we will show that we
are allowed to have the Lorentz transformation weather or
not we consider the Galilei relativity, a situation that does not
happen in model I.

Some works [1, 2] deal with the Galilei and the Special
relativities but focus on opposite goals not proposing a
scheme for unifying both relativities. In fact, in [1] the
assumption that the Galilei law of velocity applies to the
motion of bodies, signals, and forces leads to inconsistencies
that are solved by the introduction of the postulate of the
constancy of the speed of light, which ultimately leads to
SR. In [2], a transformation relating the Galilei and the
Minkowski-Einstein coordinates is established, which may
signalize that relativistic effects are due to motion relative to
an actual 3-space. (The author continues this development
in a model that is known by Process Physics.) In our work,
we follow another direction as our goal is to harmonize both
relativities by a convenient treatment of the absolute time and
the fundamentals laws of both relativities. We are not aware
of any work devoted to this issue; therefore, we hope that
our work may provide a convenient starting point for further
investigation on this topic.

Our work is organized as follows. Model I is developed
in Section 3. In Section 3.1 we introduce a set of assumptions
settling the main properties of the physical space and time
that are necessary to develop a model incorporating both
the Galilei and the Special relativities. We axiomatize the
existence of two times, the absolute time of the Galilei
relativity and the physical time of SR, and we discuss an
important issue, due to Møller, concerning the correct
interpretation of the physical space where (1) is defined. In
Section 3.2 we obtain the Lorentz transformation from the
Galilei law �⃗�


= �⃗� − V⃗𝜏 and the assumptions of Section 3.1. In

Section 3.4 we obtain from the law of velocity transformation
of Galilei relativity the corresponding velocity law of SR. We
also discuss a problem associated to the so-called Thomas
precession. In Section 3.5 we give a geometric interpretation
for the spacetime of SR and show how the concept of absolute
time allows to define a partition of the spacetime in terms of
certain 3-dimensional hyperplanes. Model II is developed in
Section 4. In Section 4.1 we establish a set of assumptions that
is slightly different than the assumptions of model I, namely,
in what concerns the introduction of the Special and the
Galilei relativities (resp., numbered as assumptions (III) and
(IV)). In Section 4.2 we derive a transformation that we call
Generalized Lorentz Transformation, and in Section 4.3 we
analyze the velocity transformation associated to it. We then
show that the Generalized Lorentz Transformation includes,
as particular cases, the standard Lorentz transformation
togetherwith transformations thatmay be usedwhenwehave
superluminal frames. We then analyze in Section 4.4 how to
introduce the Galilei relativity in the framework of model II.
In Section 4.5 we analyze the conservation ofmomentum and
obtain the corresponding relativistic expression for the mass.
Finally, in Section 5 we analyze how elementary considera-
tions from the differential structure of the projective space
RP(5) allow us to think on the concept of the absolute time
as associated to one of the dimensions of Euclidean spaceR4.
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2. Basic Definitions

We recall some basic definitions that are necessary for the
statement of our assumptions.

An event is any physical occurrence taking place on
a certain location and in a certain instant. We adopt the
standard definitions of observer and reference frame as stated
concisely in [3]; that is, by an observer we understand any
entity equipped with a standard rod and a standard clock that
allows for the measurement of length and time (in fact, the
physical time as we will introduce in the assumption (II)) and
that is able to communicate with other observers by means of
light signals. A reference frame is understood as an infinite set
of observers each one at rest relative to the other and having
their standard clocks synchronized. Abstractly, the infinite
set of observers composing a reference frame is idealized in
such a way that for any event there is an observer present
on the same location where the event took place, which then
establishes the space coordinate of the event. This observer
also determines, by the reading of his clock, the instant of
time when the event occurred. We will consider reference
frames endowed with a rectangular coordinate system. By an
inertial frame we understand any frame in which a body free
of forces is unaccelerated.

We use the notation (𝑡
𝑆𝑃
, �⃗�
𝑆𝑃
) to denote the description

of an event 𝑃 relative to a frame 𝑆. We write (𝑡
𝑆𝑃
, �⃗�
𝑆𝑃
) ∼

(𝑡
𝑆

𝑃
, �⃗�
𝑆

𝑃
) to indicate the same event 𝑃 as seen by the frames

𝑆, 𝑆
. In the particular case when one frame 𝑆 analyzes the

movement of another frame 𝑆, we will assume that the frame
𝑆
 is entirely represented by its origin and write �⃗�

𝑆𝑆
 for the

position of 𝑆 relative to 𝑆, and 𝑡
𝑆𝑆
 for the time measured by

𝑆. Finally, in our work by a Lorentz transformation we always
mean a Lorentz boost, except in Section 5 where a Lorentz
boost attains its precise meaning as a particular Lorentz
transformation.

3. Model I

3.1. The Assumptions. In what concerns space and time, our
basic assumptions are as follows.

(I) Space. Each inertial frame describes space as being an
euclidean 3-dimensional vector space.

(II) Time. We model time as any variable that can be
used to describe what we intuitively understand as
the “instant when events occur.” We distinguish two
kinds of choices as follows. By physical time, denoted
by 𝑡, we understand a choice for the time variable that
can be measured with the use of standard devices,
like atomic clocks, under suitable arrangements (e.g.,
when they are the clocks of a reference frame and are
all conveniently synchronized, etc.). By absolute time,
denoted by 𝜏, we understand a choice for the time
variable having the property that given an event all
observers assign to it the same value for the instant
when the event occurred. (Later, through the analysis
of their transformation properties, we will identify
the physical time as the ordinary time of the special
relativity, while the absolute time will be identified

with the time of the Galilei relativity.) As a principle,
we assume that any variable that serves to describe
time may be expressed in terms of the physical time
in such way that by the measurement of the latter
one can determine the value of the former.Therefore,
for any frame in which one knows how to shift from
𝜏(𝑡) ↔ 𝑡(𝜏) it is possible to describe an event writing
its coordinates as (𝑡, �⃗�) or (𝜏, �⃗�).

(III) Given two inertial frames 𝑆, 𝑆 moving with relative
velocity V⃗ and an event 𝑃 whose coordinates are
(𝑡
𝑆𝑃
, �⃗�
𝑆𝑃
), (𝑡
𝑆

𝑃
, �⃗�
𝑆

𝑃
) relative to 𝑆, 𝑆, we have

�⃗�
2

𝑆𝑃
− 𝑐
2
𝑡
2

𝑆𝑃
= �⃗�
2

𝑆

𝑃
− 𝑐
2
𝑡
2

𝑆

𝑃
. (4)

When we consider speed calculated in terms of
derivatives relative to the physical time, the relation
(4) expresses the constancy of the speed of light.

(IV) The Galilean Relativity Principle. Given two inertial
frames 𝑆, 𝑆

 moving with relative velocity V⃗ and
an event 𝑃 whose coordinates are (𝜏, �⃗�

𝑆𝑃
), (𝜏, �⃗�

𝑆

𝑃
)

relative to 𝑆, 𝑆, we have componentwise that

�⃗�
𝑆

𝑃
= �⃗�
𝑆𝑃

− V⃗
𝑆𝑆
𝜏. (5)

(V) The relation between (𝑡
𝑆𝑃
, �⃗�
𝑆𝑃
) and (𝑡

𝑆

𝑃
, �⃗�
𝑆

𝑃
) is

linear.

Remarks. (i) In assumption (I), it is assumed that observers
in inertial frames see physical space endowed with an
euclidean structure. This assumption is supported by the
lack of evidence signalyzing deviations of space properties
from the euclidean structure (see the discussion of French
in [4, pages 59–61]). The position of an event 𝑃 relative
to inertial frames 𝑆, 𝑆 is written as �⃗�

𝑆𝑃
≡ (𝑥
1
, 𝑥
2
, 𝑥
3
) ∈

R3
𝑆
, �⃗�
𝑆

𝑃

≡ (𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ R3

𝑆
 and since each frame

is endowed with its own coordinate system, the spaces R3
𝑆

and R3
𝑆
 are conceived as distinct spaces; therefore, we must

understand the relation between the vectors �⃗�
𝑆𝑃

and �⃗�
𝑆

𝑃

established in (5) not as a vector equation defined in one and
the same vector space. However, it is possible to do so if we
reinterpret the vectors �⃗�

𝑆𝑃
and �⃗�
𝑆

𝑃
as follows. (This reasoning

is originally due to Møller [5].) Given two frames 𝑆, 𝑆 we
assume that there is a single spaceR3

𝑆𝑆
 where the components

(𝑥
1
, 𝑥
2
, 𝑥
3
), (𝑥
1
, 𝑥
2
, 𝑥
3
) of the vectors �⃗�

𝑆𝑃
, �⃗�
𝑆

𝑃
are seen as

images of maps

R
3

𝑆
→ R

3

𝑆𝑆
 : �⃗�𝑆𝑃 → (𝑥

1
, 𝑥
2
, 𝑥
3
) ,

R
3

𝑆
 → R

3

𝑆𝑆
 : �⃗�
𝑆

𝑃
→ (𝑥

1
, 𝑥
2
, 𝑥
3
)

(6)

and such that for a fixed 𝜏 they satisfy (5); that is, we can think
of the vectors �⃗�

𝑆𝑃
, �⃗�
𝑆

𝑃
as vectors in R3

𝑆𝑆
 , which justify using

the same notation for them. Equation (5) is now understood
as an equation defined in R3

𝑆𝑆
 .

From the perspective of the Galilei relativity, it is clear
that the vector �⃗�

𝑆

𝑃

∈ R3
𝑆
 can be measured directly from

the observers of the frame 𝑆 that at the instant 𝜏 are placed,
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respectively, at the positions corresponding to the origin of
the frame 𝑆

 and the event 𝑃; that is, componentwise we
identify R3

𝑆
 ∋ �⃗�
𝑆

𝑃
↔ ⃗𝜂 ∈ R3

𝑆
,

(7)

where

⃗𝜂 := �⃗�
𝑆𝑃

− �⃗�
𝑆𝑆
 = �⃗�
𝑆𝑃

− V⃗
𝑆𝑆
𝜏. (8)

This corresponds to the same equation (5), now referred
entirely to the space R3

𝑆
. This procedure is equivalent to

identify R3
𝑆𝑆
 with R3

𝑆
. A similar procedure allows to identify

R3
𝑆𝑆
 and R3

𝑆
 . The assumption that spaces R3

𝑆
, R3
𝑆
 are

euclidean is then consistent with the interpretation we obtain
for (5) through the identification R3

𝑆
≃ R3
𝑆𝑆
 , R3
𝑆
 ≃ R3
𝑆𝑆
 .

A different picture emerges in SR. Now, instead of (5) we
have the relation (it seems it was Møller (see [5, Section 2.4])
who first noticed the importance of giving a correct interpre-
tation for (9) as an equation established in an abstract vector
space, where it would make sense to relate to the vectors
�⃗�
𝑆𝑃

and �⃗�
𝑆

𝑃
that, in principle, belong to different spaces.

Møller did so thinking exclusively from the perspective of the
SR. However, the same question is already manifest from the
perspective of the Galilei relativity if we intend to interpret
correctly (5))

�⃗�
𝑆

𝑃
= �⃗�
𝑆𝑃

− (1 − 𝛾)
x⃗
𝑆𝑃

⋅ V⃗
𝑆𝑆


V2
𝑆𝑆


V⃗
𝑆𝑆
 − 𝛾V⃗

𝑆𝑆
𝑡
𝑆𝑃
. (9)

Here, the vectors �⃗�
𝑆𝑃

∈ R3
𝑆
, �⃗�
𝑆

𝑃
∈ R3
𝑆
 are mapped into an

abstract space 𝑉
𝑆𝑆
 , where we understand that (9) is defined.

From the perspective of SR and according to the frame 𝑆, if the
event 𝑃 occurs at the instant 𝑡

𝑆𝑃
, the observers on the frame

𝑆 that occupy, respectively, the positions of the origin of the
frame 𝑆 and the event 𝑃 allow us to define a vector ⃗𝜂

⃗𝜂 := �⃗�
𝑆𝑃

− V⃗
𝑆𝑆
𝑡
𝑆𝑃
, (10)

which is not componentwise equal to the vector �⃗�
𝑆

𝑃
as

measured by the frame 𝑆

(11)

In fact, using the relation

𝑡
𝑆

𝑃
= 𝛾(𝑡

𝑆𝑃
−
�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆


𝑐2
) (12)

together with (9) to write �⃗�
𝑆𝑃

in terms of �⃗�
𝑆

𝑃
, 𝑡
𝑆

𝑃
, we obtain

componentwise that

⃗𝜂 = �⃗�
𝑆

𝑃
+
1 − 𝛾

𝛾

�⃗�
𝑆

𝑃
⋅ V⃗
𝑆

𝑆

V2
𝑆

𝑆

V⃗
𝑆

𝑆
. (13)

Therefore, from the perspective of SR, we cannot identify the
vectors ⃗𝜂 and �⃗�

𝑆

𝑃
as we did before. Physically, this means

that measurements performed by the observers of the frame
𝑆 are not sufficient to identify (10) with (9) of 𝑉

𝑆𝑆
 . We then

distinguish the spaces R3
𝑆𝑆
 and 𝑉

𝑆𝑆
 in the sense that we

cannot identify R3
𝑆
or R3
𝑆
 with 𝑉

𝑆𝑆
 as we did in the case of

the Galilei relativity.
(ii) In assumption (III), we consider that (4) holds not

only for the events associated with the movement of a
light ray, but also for every event. As we know [6], in the
standard treatment of SR if we assume that (4) is verified
for a light ray, then from the assumption of the linearity of
the transformation involving �⃗�, 𝑡 and �⃗�


, 𝑡
 we obtain that

condition (4) is also verified for any event. In our approach,
since we work essentially with two equations (4), (5) and an
extended set of variables {𝜏, 𝑡, 𝑡, �⃗�, �⃗�}, there is no guarantee
that assuming that (4) is true for a light ray would imply its
validity for all events. (For the case of the standard treatment
of the SR, Landau and Lifshitz give a heuristic argument
justifying it in [7, page 5], while Einstein put it axiomatically
in [8, appendix one].) Therefore, in the development of our
model it is necessary to assume from the beginning that (4)
is verified for not only for those events associated to the
movement of a light ray, but also all events. This will become
evident in the derivation shown in Section 3.2.

(iii) The physical and the absolute time introduced in
assumption (II) assume their specific characteristic from the
conditions they have to obey in assumptions (III) and (IV).
These conditions identify 𝑡 as the time of Special relativity and
𝜏 as the time of Galilei relativity.

(iv) Whenever we set a transformation between two
frames we assume that at 𝜏 = 0, or equivalently at 𝑡 = 𝑡


= 0,

the origins of both frames coincide and their coordinate axes
are parallel.

(v) In assumption (V), by a linear relation between the
pairs (𝑡, �⃗�), (𝑡, �⃗�)wemean that 𝑡 and �⃗� depend only on the
first-order power of 𝑡, �⃗�.

3.2. Deriving the Transformation. In order to obtain the
transformations we start from assumption (IV)

�⃗�
𝑆

𝑃
= �⃗�
𝑆𝑃

− V⃗
𝑆𝑆
𝜏 (14)

which gives

�⃗�
2

𝑆

𝑃
= �⃗�
2

𝑆𝑃
− 2�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
𝜏 + V

2

𝑆𝑆
𝜏
2
. (15)

From assumption (III) we obtain

V
2

𝑆𝑆
𝜏
2
− 2�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
 𝜏 + 𝑐

2
(𝑡
2

𝑆𝑃
− 𝑡
2

𝑆

𝑃
) = 0 (16)
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that allows us to write

𝜏 =
�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
 ± √(�⃗�

𝑆𝑃
⋅ V⃗
𝑆𝑆
)
2

− V2
𝑆𝑆

𝑐2 (𝑡2
𝑆𝑃

− 𝑡2
𝑆

𝑃
)

V2
𝑆𝑆


. (17)

Now, according to assumption (V), we look for a relation
between 𝑡

𝑆𝑃
and 𝑡
𝑆

𝑃
such that the corresponding expression

for 𝜏 given in (17), when replaced into (14), results in a
transformation involving at most terms to the first power in
�⃗�
𝑆

𝑃
, �⃗�
𝑆𝑃
. In order to obtain that, let us consider the following

particular relation between 𝑡
𝑆𝑃

and 𝑡
𝑆

𝑃
, for example,

𝑡
𝑆

𝑃
= 𝑎𝑡
𝑆𝑃

+ 𝑏�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
 (18)

which gives 𝑡2
𝑆𝑃
−𝑡
2

𝑆

𝑃
= (1−𝑎

2
)𝑡
2

𝑆𝑃
−2𝑎𝑏 �⃗�

𝑆𝑃
⋅ V⃗
𝑆𝑆
 𝑡
𝑆𝑃
−𝑏
2
(�⃗�
𝑆𝑃
⋅

V⃗
𝑆𝑆
)
2. The constants 𝑎 and 𝑏must be chosen in such way that

(�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
)
2
− V2
𝑆𝑆
𝑐
2
(𝑡
2

𝑆𝑃
− 𝑡
2

𝑆

𝑃
) becomes a perfect square, that

is,

(�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
)
2

− V
2

𝑆𝑆
𝑐
2
(𝑡
2

𝑆𝑃
− 𝑡
2

𝑆

𝑃
)

= (1 + V
2

𝑆𝑆
𝑐
2
𝑏
2
) (�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
)
2

+ 2V
2

𝑆𝑆
𝑐
2
𝑎𝑏�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
𝑡
𝑆𝑃

+ (𝑎
2
− 1) V

2

𝑆𝑆
𝑐
2
𝑡
2

𝑆𝑃

≡ [(�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
)√1 + V2

𝑆𝑆

𝑐2𝑏2 − √𝑎2 − 1𝑐V

𝑆𝑆
𝑡
𝑆𝑃
]
2

(19)

which gives 𝑎2 = 1 + V2
𝑆𝑆
𝑐
2
𝑏
2. (We could have written (19) in

the form (�⃗�
𝑆𝑃
⋅ V⃗
𝑆𝑆
)√1 + V2

𝑆𝑆

𝑐2𝑏2+√𝑎2 − 1𝑐V

𝑆𝑆
𝑡
𝑆𝑃
. As we will

see, the minus sign adopted in (19) becomes necessary if we
intend to obtain the standard Lorentz transformation of SR.)
We have then

𝜏 =
�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
 ±


�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
 |𝑎| − √𝑎2 − 1𝑐V

𝑆𝑆
𝑡
𝑆𝑃



V2
𝑆𝑆


. (20)

Here, the choice for the sign of 𝜏 is fixed as follows. Replacing
𝜏 given by (20) into (14) and considering the time transfor-
mation (18), we assume that the transformation (𝑡

𝑆𝑃
, �⃗�
𝑆𝑃
) →

(𝑡
𝑆

𝑃
, �⃗�
𝑆

𝑃
) is invertible upon replacing (𝑡

𝑆

𝑃
, �⃗�
𝑆

𝑃
, V⃗
𝑆

𝑆
) ↔

(𝑡
𝑆𝑃
, �⃗�
𝑆𝑃
, V⃗
𝑆𝑆
) with V⃗

𝑆

𝑆

= −V⃗
𝑆𝑆
 . Therefore, we notice the

following.

(i) If �⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
 |𝑎| − √𝑎2 − 1𝑐V

𝑆𝑆
𝑡
𝑆𝑃

≥ 0, we must choose

𝜏 =
�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
 −


�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
 |𝑎| − √𝑎2 − 1𝑐V

𝑆𝑆
𝑡
𝑆𝑃



V2
𝑆𝑆


= (1 − |𝑎|)
�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆


V2
𝑆𝑆


+
√𝑎2 − 1

V
𝑆𝑆


𝑐𝑡
𝑆𝑃
.

(21)

(ii) If �⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
 |𝑎| − √𝑎2 − 1𝑐V

𝑆𝑆
𝑡
𝑆𝑃

< 0, we must choose

𝜏 =
�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
 +


�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
 |𝑎| − √𝑎2 − 1𝑐V

𝑆𝑆
𝑡
𝑆𝑃



V2
𝑆𝑆


= (1 − |𝑎|)
�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆


V2
𝑆𝑆


+
√𝑎2 − 1

V
𝑆𝑆


𝑐𝑡
𝑆𝑃
.

(22)

In both cases, we obtain the transformation

�⃗�
𝑆

𝑃
= �⃗�
𝑆𝑃

− (1 − |𝑎|)
�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆


V2
𝑆𝑆


V⃗
𝑆𝑆
 −

√𝑎2 − 1

V
𝑆𝑆


𝑐𝑡
𝑆𝑃
V⃗
𝑆𝑆
 ,

𝑡
𝑆

𝑃
= |𝑎| 𝑡

𝑆𝑃
−
√𝑎2 − 1

V
𝑆𝑆
𝑐

�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆
 ,

(23)

𝜏 := (1 − |𝑎|)
�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆


V2
𝑆𝑆


+
√𝑎2 − 1

V
𝑆𝑆


𝑐𝑡
𝑆𝑃
. (24)

As we have expected, the transformation (23) satisfies the
condition �⃗�

2

𝑆

𝑃
− 𝑐
2
𝑡
2

𝑆

𝑃
= �⃗�
2

𝑆𝑃
− 𝑐
2
𝑡
2

𝑆𝑃
and leaves 𝜏 invariant,

that is,

𝜏

= (1 − |𝑎|)

�⃗�
𝑆

𝑃
⋅ V⃗
𝑆

𝑆

V2
𝑆

𝑆

+
√𝑎2 − 1

V
𝑆

𝑆

𝑐𝑡
𝑆

𝑃

= (1 − |𝑎|)
�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆


V2
𝑆𝑆


+
√𝑎2 − 1

V
𝑆𝑆


𝑐𝑡
𝑆𝑃

= 𝜏

(25)

since it was built in order to satisfy those assumptions. Here,
we assume that the parameter 𝑎 depends on the relative speed
V
𝑆𝑆
 , which for convenience we denote by 𝑎V

𝑆𝑆

. Under this

assumption, we also obtain that 𝑎V
𝑆

𝑆

= 𝑎V
𝑆𝑆

.

The transformation (23) depends on the velocity
V⃗
𝑆𝑆
 that is defined as the derivative relative to the absolute

time:

V⃗
𝑆𝑆
 =

𝑑�⃗�
𝑆𝑆


𝑑𝜏
. (26)

Now, considering the physical time 𝑡
𝑆𝑆
 we can define another

velocity

⃗̃V
𝑆𝑆
 :=

𝑑�⃗�
𝑆𝑆


𝑑𝑡
𝑆𝑆


. (27)

We obtain a relation between ⃗̃V
𝑆𝑆
 , V⃗
𝑆𝑆
 as follows. Identifying

𝑃 with the origin of the frame 𝑆 we have from (24)

𝜏 =
√𝑎2V
𝑆𝑆


− 1


𝑎V
𝑆𝑆




𝑐

V
𝑆𝑆


𝑡
𝑆𝑆
 (28)

which allows us to write

�⃗�
𝑆𝑆
 = V⃗
𝑆𝑆


√𝑎2V
𝑆𝑆


− 1


𝑎V
𝑆𝑆




𝑐

V
𝑆𝑆


𝑡
𝑆𝑆
 (29)

and then

⃗̃V
𝑆𝑆
 = V⃗
𝑆𝑆


√𝑎2V
𝑆𝑆


− 1


𝑎V
𝑆𝑆




𝑐

V
𝑆𝑆


. (30)

Since the parameter 𝑎V
𝑆𝑆

depends on V

𝑆𝑆
 , we obtain that Ṽ

𝑆𝑆


also depends on V
𝑆𝑆
 through the expression

Ṽ2
𝑆𝑆


𝑐2
=
𝑎
2

V
𝑆𝑆


− 1

𝑎2V
𝑆𝑆


(31)
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which gives

Ṽ
𝑆𝑆
 < 𝑐. (32)

Therefore, in our formalism every speed calculated as the
derivative relative to the physical time is always less than 𝑐.
Since in SR this is the type of derivative we consider, it seems
that the problem of tachyons is ruled out in SR. From (31) we
may express 𝑎V

𝑆𝑆

in terms of Ṽ

𝑆𝑆
 as

𝑎V
𝑆𝑆

=

1

√1 − (Ṽ2
𝑆𝑆

/𝑐2)

≡ 𝛾V
𝑆𝑆

, (33)

and the transformation (23) becomes

�⃗�
𝑆

𝑃
= �⃗�
𝑆𝑃

− (1 − 𝛾V
𝑆𝑆

)
�⃗�
𝑆𝑃

⋅ ⃗̃V
𝑆𝑆


Ṽ2
𝑆𝑆


⃗̃V
𝑆𝑆
 − 𝛾V

𝑆𝑆

𝑡
𝑆𝑃

⃗̃V
𝑆𝑆
 ,

𝑡
𝑆

𝑃
= 𝛾V

𝑆𝑆

(𝑡
𝑆𝑃

−
�⃗�
𝑆𝑃

⋅ ⃗̃V
𝑆𝑆


𝑐2
) ,

(34)

that is, the familiar Lorentz transformation. Hence, we have
obtained a complete equivalence between the Galilei and the
Lorentz transformation.

From (30) we obtain a similar expression relating ⃗̃V
𝑆

𝑆
and

V⃗
𝑆

𝑆
, that is, Ṽ2

𝑆

𝑆
/𝑐
2
= (𝑎
2

V
𝑆

𝑆

− 1)/𝑎
2

V
𝑆

𝑆

, and since 𝑎V
𝑆

𝑆

depends
on the absolute value |V⃗

𝑆

𝑆
| = |V⃗
𝑆𝑆
 |, we end up with

Ṽ
𝑆

𝑆
= Ṽ
𝑆𝑆
 . (35)

From (30) we could also have considered ⃗̃V
𝑆𝑆
 as a vector

in R3
𝑆𝑆
 . However, we avoid this interpretation as it would

lead to an inconsistency associated to the so-called Thomas
precession that we will analyze in Section 3.4.3.

3.3. On the Role of the Parameter 𝑎. As we have seen, the
parameter 𝑎 was introduced in (18) as a free parameter
in the sense that it was assumed to depend only on the
relative speed V

𝑆𝑆
 between the frames. The assumptions

give no prescription on how to fix this dependence. Having
established the relation between the absolute and the physical
time, we introduced another velocity ⃗̃V

𝑆𝑆
 , considered as a

derivative relative to the physical time, which is related to V⃗
𝑆𝑆


and the parameter 𝑎V
𝑆𝑆

through (30), (31).Whatever the form

we may take for 𝑎V
𝑆𝑆

, once we obtain Ṽ

𝑆𝑆
 as a function of V

𝑆𝑆


we may rewrite 𝑎V
𝑆𝑆

in terms of Ṽ

𝑆𝑆
 , which results in aV

𝑆𝑆

=

𝛾V
𝑆𝑆

(33). This gives a “universal” character for the Lorentz

transformation with the transformation (23) becoming (34).
Despite this, the constraint between V⃗

𝑆𝑆
 and ⃗̃V

𝑆𝑆
 arising from

a particular choice of 𝑎V
𝑆𝑆

may signalize different behaviors.

In fact, let us assume V
𝑆𝑆
 > 𝑐 and choose 𝑎 such that

𝑎V
𝑆𝑆

≡ 𝛾 :=

1

√1 − (𝑐2/V2
𝑆𝑆

)

. (36)

With this choice, the transformation (23) becomes

�⃗�
𝑆

𝑃
= �⃗�
𝑆𝑃

− (1 − 𝛾)
�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆


V2
𝑆𝑆


V⃗
𝑆𝑆
 − 𝛾

𝑐
2

V2
𝑆𝑆


𝑡
𝑆𝑃
V⃗
𝑆𝑆
 ,

𝑡
𝑆

𝑃
= 𝛾(𝑡

𝑆𝑃
−
�⃗�
𝑆𝑃

⋅ V⃗
𝑆𝑆


V2
𝑆𝑆


)

(37)

that agrees with the expression obtained originally by
Shankara (see [9, equations (16), (17)]) and also by Duffey
[10] in the description of superluminal frames. From (31) we
obtain

Ṽ
𝑆𝑆
 =

𝑐
2

V
𝑆𝑆


, (38)

a relation that is also present in the tachyonic model of [9],
whose context is of a wave propagating in a medium with
the velocities being interpreted in a different way; namely,
⃗̃V
𝑆𝑆
 is the group velocity of the wave, while V⃗

𝑆𝑆
 is the phase

velocity. Here, even though the transformation (37) reduces
to the form given on (34), which has the usual Lorentz
form, the physical distinction between V⃗

𝑆𝑆
 and ⃗̃V

𝑆𝑆
 may be

employed to select one of the forms of the transformation as
being physically relevant for the problemone is analyzing.We
return to this issue in Section 4.3.2.

3.4. The Velocity Transformation. Following the program
of deducing transformations directly from the assumptions
given in (I)–(IV) and the results previously obtained, we
now intend to obtain the law of velocity transformation and
analyze some of its consequences.

3.4.1. Obtaining the Transformation from the Galilean Velocity
Law. Let us assume two frames 𝑆 and 𝑆movingwith velocity
V⃗
𝑆𝑆
 and such that at 𝜏 = 0 (or equivalently at 𝑡 = 0 = 𝑡

) both
origins coincide. The position of a moving particle is written
as �⃗�
𝑆𝑃
(𝜏), �⃗�
𝑆

𝑃
(𝜏), and from �⃗�

𝑆

𝑃
= �⃗�
𝑆𝑃

− V⃗
𝑆𝑆
𝜏 we obtain the

rule of velocity addition in Galilei relativity:

𝑑�⃗�
𝑆

𝑃

𝑑𝜏
=
𝑑�⃗�
𝑆𝑃

𝑑𝜏
− V⃗
𝑆𝑆
 . (39)

From (24), and using the chain rule, we have

(
𝑑�⃗�
𝑆

𝑃

𝑑𝑡
𝑆

𝑃

)(−(1 −

𝑎V
𝑆𝑆



)
𝑑�⃗�
𝑆

𝑃

𝑑𝑡
𝑆

𝑃

⋅
V⃗
𝑆𝑆


V2
𝑆𝑆


+
√𝑎2V
𝑆𝑆


− 1

V
𝑆𝑆


𝑐)

−1

= (
𝑑�⃗�
𝑆𝑃

𝑑𝑡
𝑆𝑃

)((1 −

𝑎V
𝑆𝑆



)
𝑑�⃗�
𝑆𝑃

𝑑𝑡
𝑆𝑃

⋅
V⃗
𝑆𝑆


V2
𝑆𝑆


+
√𝑎2V
𝑆𝑆


− 1

V
𝑆𝑆


𝑐)

−1

− V⃗
𝑆𝑆
 .

(40)

Let us denote

⃗̃V
𝑆𝑃

≡
𝑑�⃗�
𝑆𝑃

𝑑𝑡
𝑆𝑃

, ⃗̃V
𝑆

𝑃
≡
𝑑�⃗�
𝑆

𝑃

𝑑𝑡
𝑆

𝑃

. (41)



ISRNMathematical Physics 7

Taking the scalar product by V⃗
𝑆𝑆
 on both sides of (40) we

obtain

⃗̃V
𝑆

𝑃
⋅ V⃗
𝑆𝑆


= 𝑐V
𝑆𝑆



𝑎V
𝑆𝑆



⃗̃V
𝑆𝑃

⋅ V⃗
𝑆𝑆
 − √𝑎2V

𝑆𝑆


− 1𝑐V
𝑆𝑆


−√𝑎2V
𝑆𝑆


− 1 ⃗̃V
𝑆𝑃

⋅ V⃗
𝑆𝑆
 +


𝑎V
𝑆𝑆



𝑐V
𝑆𝑆


.

(42)

Using this last expression back in (40) together with (30) and
(31), we obtain the final form

⃗̃V
𝑆

𝑃

=

⃗̃V
𝑆𝑃

− 𝛾V
𝑆𝑆


⃗̃V
𝑆𝑆
 − (1 − 𝛾V

𝑆𝑆

) (( ⃗̃V
𝑆𝑃

⋅ ⃗̃V
𝑆𝑆
) /Ṽ2
𝑆𝑆
) ⃗̃V
𝑆𝑆


𝛾V
𝑆𝑆

(1 − (( ⃗̃V

𝑆𝑃
⋅ ⃗̃V
𝑆𝑆
) /𝑐2))

.

(43)

Since ⃗̃V
𝑆

𝑃
and ⃗̃V
𝑆𝑃

are derivatives of the position vectors �⃗�
𝑆

𝑃
,

�⃗�
𝑆𝑃

with respect to the physical times 𝑡
𝑆

𝑃
and 𝑡
𝑆𝑃
, we see

(43) as the “physical time” counterpart of the rule of velocity
addition of the Galilean relativity. It is straightforward to
obtain that

Ṽ2
𝑆

𝑃

𝑐2
= 1 +

(Ṽ2
𝑆𝑃
/𝑐
2
) − 1

𝛾V
𝑆𝑆

(1 − (( ⃗̃V

𝑆𝑃
⋅ ⃗̃V
𝑆𝑆
) /𝑐2))

2
, (44)

and we conclude that Ṽ
𝑆𝑃

> 𝑐 ⇒ Ṽ
𝑆

𝑃
> 𝑐 and Ṽ

𝑆𝑃
< 𝑐 ⇒

Ṽ
𝑆

𝑃

< 𝑐. However, for a particle moving with a constant
velocity relative to the frames 𝑆, 𝑆, we also have similar
relations as the ones given in (31):

Ṽ
𝑆𝑃

< 𝑐, Ṽ
𝑆

𝑃
< 𝑐. (45)

Therefore, the only possibility for having Ṽ
𝑆𝑃

> 𝑐, Ṽ
𝑆

𝑃
> 𝑐

is related to a situation that does not demand relation (31),
perhaps the case of an accelerated particle that would result
in a relation for 𝜏 different from the one obtained in (24) that
is the base for deducing (31).

3.4.2. The Light Speed as a Derivative Relative to 𝜏. Let us
assume the propagation of a light ray with �⃗�

𝑆𝑃
, �⃗�
𝑆

𝑃
being the

position of a point𝑃 in the wave front as seen by 𝑆 and 𝑆; that
is,

𝑑�⃗�
𝑆𝑃

𝑑𝑡
𝑆𝑃

= ⃗𝑐,
𝑑�⃗�
𝑆

𝑃

𝑑𝑡
𝑆

𝑃

= ⃗𝑐
 (46)

with | ⃗𝑐

| = | ⃗𝑐| = 𝑐. We then have

𝑑�⃗�
𝑆𝑃

𝑑𝜏
=
𝑑�⃗�
𝑆𝑃

𝑑𝑡
𝑆𝑃

𝑑𝑡
𝑆𝑃

𝑑𝜏

⇒ 𝑐
𝑆
=

𝑐

(1 − |𝑎|) (( ⃗𝑐 ⋅ V⃗

𝑆𝑆
) /V2
𝑆𝑆

) + √𝑎2 − 1 (𝑐/V

𝑆𝑆
)


,

(47)

𝑑�⃗�
𝑆

𝑃

𝑑𝜏
=
𝑑�⃗�
𝑆

𝑃

𝑑𝑡
𝑆

𝑃

𝑑𝑡
𝑆

𝑃

𝑑𝜏

⇒ 𝑐
𝑆
 =

𝑐

− (1 − |𝑎|) (( ⃗𝑐 ⋅ V⃗

𝑆𝑆
) /V2
𝑆𝑆

) + √𝑎2 − 1 (𝑐/V

𝑆𝑆
)


(48)

that implies different values for the speed when considered as
a rate of change relative to the absolute time; that is,

𝑐
𝑆
=


𝑑�⃗�
𝑆𝑃

𝑑𝜏


̸= 𝑐


𝑆
=


𝑑�⃗�
𝑆

𝑃

𝑑𝜏


. (49)

Here, there is one more consistency check to be performed.
We expect to have the following relation: |�⃗�

𝑆𝑃
| = 𝑐
𝑆
Δ𝜏 = 𝑐Δ𝑡.

In fact, consider an event 𝑃 : (𝑡, �⃗�) ∼ (𝜏, �⃗�) as described by 𝑆.
At this instant, assume that the observer in the frame 𝑆 that
is at the same location of the event 𝑃 sends a light ray towards
the observer that is at the origin of 𝑆. The arrival of the light
ray at the origin of 𝑆 corresponds to another event described
by 𝑆 as (𝑡

1
, 0) ∼ (𝜏

1
, 0). Here, in order to relate 𝑡 and 𝜏, and 𝑡

1

and 𝜏
1
, we assume any auxiliary frame 𝑆 moving relative to 𝑆

with velocity V⃗ and employ (25). For the events (𝑡, �⃗�) ∼ (𝜏, �⃗�),
(𝑡
1
, 0) ∼ (𝜏

1
, 0), we then have

𝜏 = (1 − |𝑎|)
�⃗� ⋅ V⃗

V2
+
√𝑎2 − 1

V
𝑐𝑡,

𝜏
1
=
√𝑎2 − 1

V
𝑐𝑡
1
.

(50)

Denoting Δ𝑡 := 𝑡
1
− 𝑡 and expressing �⃗� = − ⃗𝑐Δ𝑡, we obtain

Δ𝜏 := 𝜏
1
− 𝜏 = [√𝑎2 − 1

𝑐

V
+ (1 − |𝑎|)

⃗𝑐 ⋅ V⃗

V2
]Δ𝑡. (51)

Then,

|�⃗�| = 𝑐Δ𝑡 =
𝑐

√𝑎2 − 1 (𝑐/V) + (1 − |𝑎|) (( ⃗𝑐 ⋅ V⃗) /V2)
Δ𝜏, (52)

and from (47) we obtain |�⃗�| = 𝑐
𝑆
Δ𝜏.

3.4.3. The Composition of Velocities. Let us assume three
frames Σ, 𝑆, 𝑆 moving relative to each other with velocities
V⃗
Σ𝑆
, V⃗
Σ𝑆
 , V⃗
𝑆𝑆
 , having their axes parallel and their origins

coinciding at 𝜏 = 0. According to Galilei relativity, we write

�⃗�
Σ𝑆
 = �⃗�
Σ𝑆

+ �⃗�
𝑆𝑆
 (53)

with

�⃗�
Σ𝑆
 = V⃗
Σ𝑆
𝜏, �⃗�

Σ𝑆
= V⃗
Σ𝑆
𝜏, �⃗�

𝑆𝑆
 = V⃗
𝑆𝑆
𝜏. (54)

In particular, we have �⃗�
Σ𝑆
 = −�⃗�

𝑆

Σ
, which results in

V⃗
Σ𝑆
 = −V⃗

𝑆

Σ
. (55)

We now analyze the movement of 𝑆 relative to 𝑆 and Σ and
then the movement of Σ relative to 𝑆 and 𝑆

 using the same
procedure that led to (43).
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(i) TheMovement of 𝑆 Relative toΣ and 𝑆. For themovement
of 𝑆 relative to Σ and 𝑆, we have (𝑡

Σ𝑆
 , �⃗�
Σ𝑆
) ∼ (𝑡

𝑆𝑆
 , �⃗�
𝑆𝑆
) and

𝜏 =

{{{{{{

{{{{{{

{

(1 −

𝑎V
Σ𝑆


)
�⃗�
𝑆𝑆
 ⋅ (−V⃗

Σ𝑆
)

V2
Σ𝑆

+
√𝑎2V
Σ𝑆

− 1

V
Σ𝑆

𝑐𝑡
𝑆𝑆


(1 −

𝑎V
Σ𝑆


)
�⃗�
Σ𝑆
 ⋅ V⃗
Σ𝑆

V2
Σ𝑆

+
√𝑎2V
Σ𝑆

− 1

V
Σ𝑆

𝑐𝑡
Σ𝑆
 .

(56)

From (53) we obtain

𝑑�⃗�
Σ𝑆


𝑑𝑡
Σ𝑆


𝑑𝑡
Σ𝑆


𝑑𝜏
= V⃗
Σ𝑆

+
𝑑�⃗�
𝑆𝑆


𝑑𝑡
𝑆𝑆


𝑑𝑡
𝑆𝑆


𝑑𝜏
. (57)

Denoting

⃗̃V
Σ𝑆
 ≡

𝑑�⃗�
Σ𝑆


𝑑𝑡
Σ𝑆


, ⃗̃V
𝑆𝑆
 ≡

𝑑�⃗�
𝑆𝑆


𝑑𝑡
𝑆𝑆


(58)

and using (56), we obtain by the same procedure employed in
obtaining (43) the following expression:

⃗̃V
Σ𝑆
 =

⃗̃V
𝑆𝑆
 + 𝛾V

Σ𝑆

⃗̃V
Σ𝑆

− (1 − 𝛾V
Σ𝑆

) (( ⃗̃V
𝑆𝑆
 ⋅ ⃗̃V
Σ𝑆
) /Ṽ2
Σ𝑆
) ⃗̃V
Σ𝑆

𝛾V
Σ𝑆

(1 + (( ⃗̃V
𝑆𝑆
 ⋅ ⃗̃V
Σ𝑆
) /𝑐2))

.

(59)

(ii) TheMovement of ΣRelative to 𝑆 and 𝑆. For themovement
of Σ relative to 𝑆 and 𝑆

, we have (𝑡
𝑆Σ
, �⃗�
𝑆Σ
) ∼ (𝑡
𝑆

Σ
, �⃗�
𝑆

Σ
) and

𝜏 =

{{{{{{

{{{{{{

{

(1 −

𝑎V
𝑆

𝑆


)
�⃗�
𝑆Σ

⋅ (−V⃗
𝑆

𝑆
)

V2
𝑆

𝑆

+
√𝑎2V
𝑆

𝑆

− 1

V
𝑆

𝑆

𝑐𝑡
𝑆Σ
,

(1 −

𝑎V
𝑆

𝑆


)
�⃗�
𝑆

Σ
⋅ V⃗
𝑆

𝑆

V2
𝑆

𝑆

+
√𝑎2V
𝑆𝑆

− 1

V
𝑆

𝑆

𝑐𝑡
𝑆

Σ
.

(60)

From (53) and using that �⃗�
𝑆

Σ
= −�⃗�
Σ𝑆
 , �⃗�
Σ𝑆

= −�⃗�
𝑆Σ
, �⃗�
𝑆

𝑆
=

−�⃗�
𝑆𝑆
 , we now have

𝑑�⃗�
𝑆

Σ

𝑑𝑡
𝑆

Σ

𝑑𝑡
𝑆

Σ

𝑑𝜏
=
𝑑�⃗�
𝑆Σ

𝑑𝑡
𝑆Σ

𝑑𝑡
𝑆Σ

𝑑𝜏
+ V⃗
𝑆

𝑆
. (61)

Denoting

⃗̃V
𝑆

Σ
≡
𝑑�⃗�
𝑆

Σ

𝑑𝑡
𝑆

Σ

, ⃗̃V
𝑆Σ

≡
𝑑�⃗�
𝑆Σ

𝑑𝑡
𝑆Σ

, (62)

we obtain

⃗̃V
𝑆

Σ
=

⃗̃V
𝑆Σ

+ 𝛾V
𝑆𝑆


⃗̃V
𝑆

𝑆
− (1 − 𝛾V

𝑆𝑆

) (( ⃗̃V
𝑆Σ

⋅ ⃗̃V
𝑆

𝑆
) /Ṽ2
𝑆

𝑆
) ⃗̃V
𝑆

𝑆

𝛾V
𝑆𝑆

(1 + (( ⃗̃V

𝑆Σ
⋅ ⃗̃V
𝑆

𝑆
) /𝑐2))

,

(63)

where we have used that Ṽ
𝑆𝑆
 = Ṽ
𝑆

𝑆
to identify 𝛾V

𝑆𝑆

= 𝛾V

𝑆

𝑆

.
We recognize (59), (63) with the velocity transformations
obtained by Møller in his analysis of the Thomas precession
[5]. As we know, in this particular case, the velocities ⃗̃V

Σ𝑆
 , ⃗̃V
𝑆

Σ

are related by a rotation [5, 11]. We notice that each of (59),

(63) involves vectors belonging to different spaces; therefore
we should interpret each equation in the same way as we did
for (9); that is, ⃗̃V

Σ𝑆
 , ⃗̃V
𝑆

Σ
are vectors belonging to an abstract

space 𝑉 where (59), (63) make sense. It is in this space that
we have

⃗̃V
Σ𝑆
 ̸= − ⃗̃V

𝑆

Σ
, (64)

which accounts for the Thomas precession. However, the
vectors V⃗

Σ𝑆
 , V⃗
𝑆

Σ
are defined in the space R3

Σ𝑆𝑆
 where they

satisfy (55), which is a consequence of the frames Σ, 𝑆, 𝑆
having their axis parallel during its translational movement.
Now, the reason for not identifying the velocities ⃗̃V

Σ𝑆
 , ⃗̃V
𝑆

Σ
as

vectors in R3
Σ𝑆𝑆
 becomes clear. Indeed, if this was the case,

then using (30) we would associate each of them with the
vectors V⃗

Σ𝑆
 , V⃗
𝑆

Σ
through

⃗̃V
Σ𝑆
 = V⃗
Σ𝑆


√𝑎2V
Σ𝑆


− 1


𝑎V
Σ𝑆




𝑐

V
Σ𝑆


, ⃗̃V
𝑆

Σ
= V⃗
𝑆

Σ

√𝑎2V
𝑆

Σ

− 1


𝑎V
𝑆

Σ



𝑐

V
𝑆

Σ

,

(65)

and from (55) we would have ⃗̃V
Σ𝑆
 = − ⃗̃V

𝑆

Σ
, which contradicts

(64).

3.5. The Structure of Space and Time. Spacetime is the physi-
cal arena where events occur. Therefore, in order to describe
spacetime, we must endow it with a suitable coordinate
system, for example, the one provided by a reference frame,
which is how we describe events. In our approach, we have
an equivalence between the absolute and the physical time
that allows an observer to associate coordinates with events
according to (𝜏, �⃗�) or (𝑡, �⃗�), and from each of these coordi-
natizations originates a particular view for the spacetime. In
what follows, we search for a description of spacetime that
combines the views of the Galilei and the Special relativities.

Given two frames 𝑆, 𝑆, let us write the Galilei transfor-
mation as

(𝜏
𝑆
, �⃗�
𝑆
) → (𝜏

𝑆
 , �⃗�
𝑆
) : {

𝜏
𝑆
= 𝜏
𝑆
 ≡ 𝜏

�⃗�
𝑆
 = �⃗�
𝑆
− V⃗𝜏.

(66)

Due to the absolute character of 𝜏, we have that for a fixed 𝜏 ≡

𝜏
𝑆
= 𝜏
𝑆
 the Galilei transformation is essentially a mapR3

𝑆
→

R3
𝑆
 , where R3

𝑆
∋ �⃗�
𝑆
,R3
𝑆
 ∋ �⃗�

𝑆
 denote the 3-dimensional

Euclidean space. When spacetime is described using (𝜏, �⃗�) as
coordinates, we refer to it as the Galilei spacetime that admits
the following representation: ∪

𝜏∈R({𝜏} × R3) ≡ R × R3. In
this sense, the Galilei spacetime decomposes in terms of 3-
dimensional spaces R3 that are indexed by 𝜏 ∈ R.

Now, let us analyze the transformation under the form
(23). For the same fixed value of 𝜏, we rewrite (25) as

𝜏 = 𝑥
0
𝑛
0
+ �⃗� ⋅ ⃗𝑛 = 𝑥

0
𝑛
0
+ �⃗�

⋅ ⃗𝑛
 (67)

with

𝑛
𝜇
≡ (𝑛
0
, ⃗𝑛) := (

√𝑎2 − 1

V
, −

(|𝑎| − 1) V⃗

V2
) ,

𝑛
𝜇
≡ (𝑛
0
, ⃗𝑛

) := (

√𝑎2 − 1

V
,
(|𝑎| − 1) V⃗

V2
)

(68)
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and 𝑥
𝜇

≡ (𝑥
0
, �⃗�) := (𝑐𝑡, �⃗�), 𝑥

𝜇
≡ (𝑥
0
, �⃗�

) := (𝑐𝑡


, �⃗�

).

We identify (67) as the equation of two hyperplanes 𝜎
𝜏

:

𝜏 = 𝑥
0
𝑛
0
+ �⃗� ⋅ ⃗𝑛 and 𝜎



𝜏
: 𝜏 = 𝑥

0
𝑛
0

+ �⃗�

⋅ ⃗𝑛
 defined,

respectively, in the spacesR4
𝑆
andR4

𝑆
 (the spacesR4

𝑆
∋ (𝑐𝑡, �⃗�),

R4
𝑆
 ∋ (𝑐𝑡


, �⃗�

) serve here as the background in terms of

which each observer describes spacetime). Then, for a fixed
value of 𝜏, the transformation (23) is seen as a transformation
𝜎
𝜏
→ 𝜎


𝜏
between these hyperplanes. Here, when spacetime

is described using (𝑡, �⃗�) as coordinates (in fact, in order to
have coordinates with the dimension of length we would
write (𝑐𝑡, �⃗�) and (𝑐𝜏, �⃗�) in place of, respectively, (𝑡, �⃗�) and
(𝜏, �⃗�)), we refer to it as the SR spacetime and it decomposes
as ∪
𝜏∈R 𝜎
𝜏
≡ R4.

From the previous considerations, the properties of the
spacetime that arise from our unified model are summarized
as follows. First, we notice that the Galilei and SR spacetime
refer to the same spacetime in fact, they are just different
descriptions of the same structure. Second, both the Galilei
and the SR spacetime are sliced by 3-dimensional spaces,
with the Galilei spacetime being “sliced” by hyperplanes that
are normal to the 𝜏-direction or, equivalently, by planes
that correspond to the space R3. For the SR spacetime, the
“slicing” is made by hyperplanes 𝜎

𝜏
, 𝜎
𝜏
that are orthogonal

to the direction of the vectors 𝑛 and 𝑛
. In particular, the

relation between the Galilei transformation and the Lorentz
transformation is clarified by the diagram below:

(69)

where for a fixed 𝜏 and relative to two frames of reference 𝑆, 𝑆
that move with relative velocity V⃗ we have defined mappings

𝑖
𝜏
: R
3

𝑆
→ R

4

𝑆
,

�⃗� → (𝑐𝑡 (𝜏, �⃗�) , �⃗�) ,

𝑡 (𝜏, �⃗�) =
V

𝑐√𝑎2 − 1
(𝜏 + (|𝑎| − 1)

�⃗� ⋅ V⃗

V2
) ,

𝑖


𝜏
: R
3

𝑆
 → R

4

𝑆
 ,

�⃗�

→ (𝑐𝑡


(𝜏, �⃗�

) , �⃗�

) ,

𝑡

(𝜏, �⃗�

) =

V

𝑐√𝑎2 − 1
(𝜏 − (|𝑎| − 1)

�⃗�

⋅ V⃗

V2
) .

(70)

We notice that endowing R3
𝑆
, R3
𝑆
 , R4
𝑆
, R4
𝑆
 with the standard

Euclidean topology we obtain 𝑖
𝜏
(R3
𝑆
) = 𝜎

𝜏
, 𝑖
𝜏
(R3
𝑆
) = 𝜎



𝜏

as embedded, respectively, in R4
𝑆
and R4

𝑆
 . Then, given a

Galilei transformation (𝜏, �⃗�)
𝜑
𝐺

→ (𝜏, �⃗�

), the embeddings 𝑖

𝜏
, 𝑖


𝜏

transfer 𝜑
𝐺
to the spaces R4

𝑆
, R4
𝑆
 where it assumes the form

of the Lorentz transformation (𝑐𝑡, �⃗�)
𝜑
𝐿

→ (𝑐𝑡

, �⃗�

), which is

shown in the scheme below

(71)

This view of the transformation provides an alternative way
to analyze some aspects of the composition of Lorentz trans-
formations. Indeed, let us write the Lorentz transformation
as

𝜑
𝐿
(V
𝑆𝑆
) = 𝑖


𝜏
(V
𝑆𝑆
) ∘ 𝜑
𝐺
(V
𝑆𝑆
) ∘ 𝑖
−1

𝜏
(V
𝑆𝑆
) (72)

and consider three frames 𝑆, 𝑆, and 𝑆 thatmovewith relative
velocities V⃗

𝑆𝑆
 , V⃗
𝑆𝑆
 , and V⃗

𝑆

𝑆
 . Consider then the following

diagram

(73)

We notice that since the hyperplanes 𝜎
𝜏
and 𝜎∗
𝜏
are different,

the Lorentz transformations 𝜑
𝐿
(V
𝑆𝑆
) and 𝜑

𝐿
(V
𝑆

𝑆
) may be

composed only through the maps 𝑖
𝜏
(V
𝑆

𝑆
 ) ∘ 𝑖

−1

𝜏
(V
𝑆𝑆
), for

example,

𝜑
𝐿
(V
𝑆

𝑆
) ∘ 𝑖


𝜏
(V
𝑆

𝑆
) ∘ 𝑖
−1

𝜏
(V
𝑆𝑆
) ∘ 𝜑
𝐿
(V
𝑆𝑆
) (74)

and we have

𝜑
𝐿
(V
𝑆

𝑆
) ∘ 𝑖


𝜏
(V
𝑆

𝑆
) ∘ 𝑖

−1

𝜏
(V
𝑆𝑆
) ∘ 𝜑
𝐿
(V
𝑆𝑆
)

= 𝑖


𝜏
(V
𝑆

𝑆
) ∘ 𝜑
𝐺
(V
𝑆

𝑆
) ∘ 𝜑

𝐺
(V
𝑆𝑆
) ∘ 𝑖
−1

𝜏
(V
𝑆𝑆
)

= 𝑖


𝜏
(V
𝑆

𝑆
) ∘ 𝜑
𝐺
(V
𝑆𝑆
) ∘ 𝑖
−1

𝜏
(V
𝑆𝑆
)

̸= 𝜑
𝐿
(V
𝑆𝑆
) .

(75)
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Therefore, from this interpretation of the Lorentz transfor-
mation acting on hyperplanes associated to the same value
of 𝜏, we reobtain the common fact that the composition of
two Lorentz transformations is not a Lorentz transforma-
tion. Here, the reason is that even though the composition
𝜑
𝐺
(V
𝑆

𝑆
) ∘ 𝜑
𝐺
(V
𝑆𝑆
)may be identified with 𝜑

𝐺
(V
𝑆𝑆
), the latter

induces the Lorentz transformation𝜑
𝐿
(V
𝑆𝑆
) only through the

embeddings 𝑖
𝜏
(V
𝑆𝑆
), 𝑖−1
𝜏
(V
𝑆𝑆
).

4. Model II

4.1. Assumptions. We propose another model based on the
following assumptions.

(I) Space. Each inertial frame describes space as an
euclidean 3-dimensional vector space.

(II) Time. Time is described by a variable 𝑡 that depends
on the frame in such a way that two inertial frames 𝑆
and 𝑆
 measure time 𝑡 and 𝑡

.

(III) The speed of light is constant relative to inertial
frames.

(IV) Relative to two inertial frames, any event (𝑡, �⃗�) ∼

(𝑡

, �⃗�

) satisfies

𝛼𝑥
0
+ ⃗𝛽 ⋅ �⃗� = 𝛼𝑥

0
− ⃗𝛽 ⋅ �⃗�

 (76)

with 𝛼, ⃗𝛽 arbitrary parameters.

(V) The relation between (𝑡, �⃗�) and (𝑡

, �⃗�

) is linear.

Remarks. (i) Postulates (I) and (II) are essentially the same
postulates (I) and (II) of model I, except that in the current
postulate (II) of model II there is no mention of the absolute
time.

(ii)Thecondition𝛼𝑥0+ ⃗𝛽⋅�⃗� = 𝛼𝑥
0
− ⃗𝛽⋅�⃗�
 is suggested by a

previous condition given in (67), but now with the constants
𝛼, ⃗𝛽 being arbitrary parameters. Here, (76) is the starting
point from which we will derive the transformation. In this
sense, it plays the same role as the relation �⃗�

2
− 𝑐
2
𝑡
2

=

�⃗�
2
−𝑐
2
𝑡
2 of the standard SR formulation.However, while in SR

this last equationmay be expressed in terms of the invariance
of the quadratic form 𝑄(𝑥

𝜇
) := �⃗�

2
− 𝑐
2
𝑡
2, which is a quantity

defined uniquely in terms of the spacetime coordinates, the
same cannot be said of (76) since it contains explicitly the
parameters 𝛼, ⃗𝛽 that, in general, do not refer to any known
property of the space and time. Therefore, unless we are able
to identify the parameters 𝛼, ⃗𝛽 with any intrinsic property
of the spacetime, it will not be possible to associate any
mathematical structure with (76) as it was done with 𝑄(𝑥

𝜇
).

4.2. The Generalized Lorentz Transformation. From (V) we
write

𝑥
0
= 𝐴
0

0
𝑥
0
+ 𝐴
0

𝑖
𝑥
𝑖
,

𝑥
𝑖
= 𝐴
𝑖

0
𝑥
0
+ 𝐴
𝑖

𝑗
𝑥
𝑗
.

(77)

From (IV), we obtain by replacing them into (76) that

𝐴
0

0
= 1 +

1

𝛼
𝐴
𝑖

0
𝛽
𝑖
,

𝐴
0

𝑖
=

1

𝛼
(𝛽
𝑖
+ 𝐴
𝑗

𝑖
𝛽
𝑗
)

(78)

which momentarily gives

𝑡

= (1 +

1

𝛼
𝐴
𝑖

0
𝛽
𝑖
) 𝑡 +

1

𝛼𝑐
(𝛽
𝑖
+ 𝐴
𝑗

𝑖
𝛽
𝑗
) 𝑥
𝑖
,

𝑥
𝑖
= 𝐴
𝑖

0
𝑐𝑡 + 𝐴

𝑖

𝑗
𝑥
𝑗
.

(79)

Here we assume

𝐴
𝑖

0
= 𝜆𝛽
𝑖
,

𝐴
𝑖

𝑗
= 𝛿
𝑖

𝑗
+ 𝜉𝛽
𝑖
𝛽
𝑗

(80)

with 𝜆, 𝜉 arbitrary quantities that will be fixed later. We
require that the inverse transformation is obtained by the
change of (𝑡, �⃗�, 𝛽𝑖) ↔ (𝑡


, �⃗�

, −𝛽
𝑖
) into (79). This fixes 𝜆 = 𝜉𝛼.

Let us consider now the expression for the velocity. Here, we
have

𝑑𝑥
𝑖

𝑑𝑡
=

𝐴
𝑖

0
𝑐 + 𝐴
𝑖

𝑗
(𝑑𝑥
𝑗
/𝑑𝑡)

1 + (1/𝛼)𝐴𝑖
0
𝛽𝑖 + (1/𝛼𝑐) (𝛽𝑖 + 𝐴

𝑗

𝑖
𝛽𝑗) (𝑑𝑥𝑖/𝑑𝑡)

. (81)

From (III) the speed of light is constant relative to any inertial
frame. Then for a light wave we have

𝑑�⃗�


𝑑𝑡
= ⃗𝑐

,

𝑑�⃗�

𝑑𝑡
= ⃗𝑐 ≡ 𝑐𝜂

with 𝜂 ⋅ 𝜂 = 1,

⃗𝑐

= | ⃗𝑐| .

(82)

From (81), (80), using 𝜆 = 𝜉𝛼, and due to the arbitrariness of
the direction of the unit vector 𝜂, we obtain

𝜉 =
2

𝛼2 (1 − (𝛽2/𝛼2))
(83)

which then fixes all the transformation constants𝐴0
0
, 𝐴
0

𝑖
, 𝐴
𝑖

0
,

and 𝐴
𝑖

𝑗
in terms of 𝛼, 𝛽 as follows

𝐴
0

0
=
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
, 𝐴

0

𝑖
= 𝐴
𝑖

0
=

2

1 − (𝛽2/𝛼2)

𝛽
𝑖

𝛼
,

𝐴
𝑖

𝑗
= 𝛿
𝑖

𝑗
+

2

1 − (𝛽2/𝛼2)

𝛽
𝑖

𝛼

𝛽
𝑗

𝛼

(84)

and finally leaves us with the transformations

𝑡

= (

1 + (𝛽
2
/𝛼
2
)

1 − (𝛽2/𝛼2)
){𝑡 +

2

𝑐 (1 + (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ �⃗�} ,

�⃗�

= �⃗� +

2

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
⋅ �⃗�

⃗𝛽

𝛼
+

2𝑐𝑡

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
.

(85)
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We have then obtained a class of transformations that is
compatible with the invariance of the speed of light and
that depends on arbitrary parameters 𝛼, ⃗𝛽. We call this
transformationGeneralized Lorentz Transformation (GLT). It
is immediate to check that it satisfies �⃗�2−𝑐2𝑡2 = �⃗�

2
−𝑐
2
𝑡
2 (and

not only for a light wave), which shows that it must include
the standard Lorentz transformation as a particular case.

Remark 1. It is possible to work with a more general relation
than the one given in (76); for example, if we assume that ⃗𝛽

can be transformed, then we would write

𝛼𝑥
0
+ ⃗𝛽 ⋅ �⃗� = 𝛼𝑥

0
− ⃗𝛽

⋅ �⃗�

, (86)

and the effect of the invariance of ⃗𝛽

⋅ �⃗�
 in this new condition

corresponds to replace ⃗𝛽 → R ⃗𝛽, �⃗� → R�⃗� in (85), that is,

𝑡

= (

1 + (𝛽
2
/𝛼
2
)

1 − (𝛽2/𝛼2)
){𝑡 +

2

𝑐 (1 + (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ �⃗�} ,

�⃗�

= R�⃗� +

2

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
⋅ �⃗�

R ⃗𝛽

𝛼
+

2𝑐𝑡

1 − (𝛽2/𝛼2)

R ⃗𝛽

𝛼

(87)

withR being an arbitrary space rotation.
In [12] Kapuscik using only the assumption of the linear-

ity of the transformation and the constancy of the speed of
light proposed a generalization of the Lorentz transformation
having the form

𝑡

= 𝐴𝑡 + �⃗� ⋅ �⃗�,

�⃗�

= √𝐴2 − 𝑐2�⃗�2 (R�⃗�) +

𝐴 − √𝐴2 − 𝑐2�⃗�2

�⃗�2
(R�⃗�) (�⃗� ⋅ �⃗�)

+ 𝑐
2
(R�⃗�) 𝑡.

(88)

The comparison of the time transformation given in (87) and
(88) suggests the identification

𝐴 =
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
, �⃗� =

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
(89)

that also shows the equivalence of the space transformation.
In our formalism, up to the derivation of (87), there is no
restriction on the parameters 𝛼, ⃗𝛽, while in the development
of [12] they have to obey 𝐴

2
− 𝑐
2
�⃗�
2

> 0. Since in [12]
the relative velocity �⃗� between the frames is identified with
−𝑐
2
(�⃗�/𝐴), the previous inequality leads to the restriction𝑉 <

𝑐. Aswewill show in Sections 4.3.1 and 4.3.2, in our formalism
there is no restriction on the relative speed of the frames.
Having obtained the GLT given in (85) we analyze in the
sequence some of its properties.

4.3. Transformation of Velocity. Associated with GLR, we
obtain by replacing (84) into (81) the associated transforma-
tion of velocity as

𝑑�⃗�


𝑑𝑡
= (

𝑑�⃗�

𝑑𝑡
+

2𝑐

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
+

2

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
⋅
𝑑�⃗�

𝑑𝑡

⃗𝛽

𝛼
)

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
+

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅
𝑑�⃗�

𝑑𝑡
)

−1

,

(90)

(
𝑑�⃗�


𝑑𝑡
)

2

− 𝑐
2

= ((
𝑑�⃗�

𝑑𝑡
)

2

− 𝑐
2
)

×((
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)

+
2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅
𝑑�⃗�

𝑑𝑡
)

2

)

−1

.

(91)

Therefore we obtain for the GLT that


𝑑�⃗�

𝑑𝑡


< 𝑐 ⇐⇒



𝑑�⃗�


𝑑𝑡


< 𝑐 or



𝑑�⃗�

𝑑𝑡


> 𝑐 ⇐⇒



𝑑�⃗�


𝑑𝑡


> 𝑐.

(92)

That is, relative to the two frames described by transformation
(85), a particle that is described as subluminal (superluminal)
particle by one frame will also be described as subluminal
(superluminal) particle by the other frame.

4.3.1. A Transformation Involving Subluminal Frames: Ṽ < 𝑐.
As a particular case of transformation (85) let us choose the
parameters 𝛼, ⃗𝛽 in such way that

1 + (𝛽
2
/𝛼
2
)

1 − (𝛽2/𝛼2)
=

1

√1 − (Ṽ2/𝑐2)
(93)

with Ṽ < 𝑐. We obtain

⃗𝛽

𝛼
= −𝑐(1 − √1 −

Ṽ2

𝑐2
)

⃗̃V

Ṽ2
(94)

that replacing in (85) leads to the transformation

𝑡

= 𝛾(𝑡 −

�⃗� ⋅ ⃗̃V

𝑐2
) ,

�⃗�

= �⃗� − (1 − 𝛾)

�⃗� ⋅ ⃗̃V

Ṽ2
⃗̃V − 𝛾 𝑡 ⃗̃V

(95)

with 𝛾 := 1/√1 − (Ṽ2/𝑐2) that corresponds to the Lorentz
transformation.
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4.3.2. A Transformation Involving Superluminal Frames: Ṽ > 𝑐.
Let us choose 𝛼, ⃗𝛽 satisfying

1 + (𝛽
2
/𝛼
2
)

1 − (𝛽2/𝛼2)
=

1

√1 − (𝑐2/Ṽ2)
(96)

with Ṽ > 𝑐. Now we obtain

⃗𝛽

𝛼
= −

1

𝑐
(1 − √1 −

𝑐
2

Ṽ2
) ⃗̃V (97)

and replacing it into (85) gives the transformation

𝑡

= 𝛾(𝑡 −

�⃗� ⋅ ⃗̃V

Ṽ2
) ,

�⃗�

= �⃗� − (1 − 𝛾)

�⃗� ⋅ ⃗̃V

Ṽ2
⃗̃V − 𝛾

𝑐
2

Ṽ2
𝑡 ⃗̃V

(98)

with 𝛾 := 1/√1 − (𝑐2/Ṽ2). Here, we reobtained Shankara and
Duffey’s transformation for tachyons [9, 10].This transforma-
tion (98) appeared originally in [9] in the description of the
propagation of a wave in a medium with one of the frames
being at rest relative to the medium and the other moving
with a speed greater than 𝑐 (in fact, in [9] since the medium
is not the vacuum, instead of 𝑐 the light speed is denoted
by 𝑤
0
). The physical content of this transformation has been

discussed more generally in [10], to which we refer the reader
for details. Here we wish to analyze the role played by the
velocity ⃗̃V in the transformation. We consider two situations.

First, let us consider the movement of an object such
that according to the frame 𝑆 the object is at rest relative to
the frame 𝑆. Assume that ⃗̃V is the relative velocity between
the frames. Then the frame 𝑆 writes for the position of the
object �⃗� = ⃗̃V𝑡. Replacing it in (98), we obtain 𝑡


= 0 and

�⃗�

= (1/𝛾)𝑡 ⃗̃V = (1/𝛾)�⃗�. Therefore, for an interval (0, Δ𝑡), 𝑆

associates with the movement of the object the set of events
{(𝑡, �⃗�) := (𝑡, ⃗̃V𝑡) : 0 ≤ 𝑡 ≤ Δ𝑡}, while 𝑆

 associates with
the set of events {(𝑡


, �⃗�

) = (0, (1/𝛾)�⃗�) : �⃗� = ⃗̃V𝑡}. Since

the whole movement of the object as described by 𝑆 reduces
in 𝑆
 to a static situation where 𝑡


= 0 and since there are

many �⃗� corresponding to the many possible values of �⃗�, we
conclude that relative to 𝑆

 the object seems to have a spatial
extension.Therefore, from the perspective of the frame 𝑆 the
object cannot be seen as a particle in the classical context.This
is reinforced by noticing that the possibility of considering
�⃗� = ⃗̃V𝑡 leads to the vanishing of the denominator of (90) that
shows that the velocity transformation law does not apply.

Let us consider now the movement of an object such that
according to the frame 𝑆 the object is at rest relative to the
frame 𝑆, that is, �⃗�


= 0. Replacing it in (98) we now obtain

𝑡

= (1/𝛾)𝑡 and �⃗� = (𝑐

2
/Ṽ2) ⃗̃V𝑡. Therefore we get


𝑑�⃗�

𝑑𝑡


=
𝑐
2

Ṽ
, (99)

and with Ṽ > 𝑐 we end up with |𝑑�⃗�/𝑑𝑡| < 𝑐. Here, it
is natural that instead of ⃗̃V we assume the relative velocity

between the frames to be �⃗� := (𝑐
2
/Ṽ2) ⃗̃V, in terms of which

the transformation (98) becomes

𝑡

= 𝛾(𝑡 −

�⃗� ⋅ �⃗�

𝑉2
) ,

�⃗�

= �⃗� − (1 − 𝛾)

�⃗� ⋅ V⃗
𝑉2

�⃗� − 𝛾𝑡�⃗�

(100)

with 𝛾 = 1/√1 − (𝑉2/𝑐2). Then, from a theoretical perspec-
tive, we conclude that a transformation like (98) may refer to
different situations according to the interpretation one gives
to ⃗̃V.

4.3.3. Another Superluminal Transformation. As another
class of transformation let us choose 𝛼, ⃗𝛽 such that

1 + (𝛽
2
/𝛼
2
)

1 − (𝛽2/𝛼2)
=

1

√(Ṽ2/𝑐2) − 1
(101)

with Ṽ > 𝑐, which gives

⃗𝛽

𝛼
= −√

1 − √(Ṽ2/𝑐2) − 1

1 + √(Ṽ2/𝑐2) − 1

⃗̃V

Ṽ
. (102)

Replacing it in (85) we obtain the transformation

𝑡

=

1

√(Ṽ2/𝑐2) − 1

{

{

{

𝑡 − √2 −
Ṽ2

𝑐2
�⃗� ⋅ ⃗̃V

𝑐Ṽ

}

}

}

�⃗�

= �⃗� +

1 − √(Ṽ2/𝑐2) − 1

√(Ṽ2/𝑐2) − 1

�⃗� ⋅ ⃗̃V

Ṽ2
⃗̃V −

√2 − (Ṽ2/𝑐2)

√(Ṽ2/𝑐2) − 1

𝑐

Ṽ
𝑡 ⃗̃V.

(103)

The condition of having real transformations requires that
Ṽ < 2𝑐, which becomes an upper bound velocity for tachyonic
motion.

4.4. Introducing the Galilei Relativity. Let us modify condi-
tion (76) writing it in the form

𝜏 = 𝛼𝑥
0
+ ⃗𝛽 ⋅ �⃗� = 𝛼𝑥

0
− ⃗𝛽 ⋅ �⃗�


, (104)

where we have introduced the absolute time 𝜏. Therefore,
assuming the Galilei transformation

�⃗�

= �⃗� − V⃗𝜏 (105)

and using (85) and (104), we obtain that

V⃗ = −
2

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼2
. (106)
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From (104) we also obtain

𝑑𝑡

𝑑𝜏
=

1

𝛼𝑐 + ⃗𝛽 ⋅ (𝑑�⃗�/𝑑𝑡)
. (107)

Let us define

�⃗� :=
𝑑�⃗�

𝑑𝜏
, ⃗̃𝑢 :=

𝑑�⃗�

𝑑𝑡

�⃗�

:=

𝑑�⃗�


𝑑𝜏
, ⃗̃𝑢



:=
𝑑�⃗�


𝑑𝑡
.

(108)

Then we obtain

�⃗�

=

⃗̃𝑢


𝛼𝑐 − ⃗𝛽 ⋅ ⃗̃𝑢

, �⃗� =

⃗̃𝑢

𝛼𝑐 + ⃗𝛽 ⋅ ⃗̃𝑢
. (109)

From the Galilei relativity we have

�⃗�

= �⃗� − V⃗. (110)

Therefore, assuming �⃗� = 0, we get �⃗� = V⃗, ⃗̃𝑢 = ⃗̃V, and

V⃗ =
⃗̃V

𝛼𝑐 + ⃗𝛽 ⋅ ⃗̃V
. (111)

Replacing this last expression into (106) we end up with

⃗̃V = −
2𝑐

1 + (𝛽2/𝛼2)

⃗𝛽

𝛼
. (112)

In particular, we notice that

Ṽ < 𝑐. (113)

Then, the assumption of an absolute time and the Galilean
relativity law in model II also leads to a situation where there
are no superluminal frames.

The expression we obtained for Ṽ in (112) also leads to
the same transformation of Section 4.3.1; therefore, when we
incorporate the Galilei relativity into model II, we reduce the
model to the standard Lorentz situation. However, different
frommodel I, as we have seen in Section 4.3.1, we are allowed
to obtain the Lorentz case without the need to impose the
Galilei relativity.

4.5. TheMomentum. Wenow search for an expression for the
momentum that is conserved in collision processes. As it is
well known [5], the conservation ofmomentum in two frames
𝑆 and 𝑆

 brings to the analysis the transformation between
them.Then, the problem here is to find an expression for the
momentum that satisfies a conservation law as seen by frames
related by the GLT.

Let us perform our analysis considering a particular
collision process involving two particles with the same mass
and such that relative to 𝑆 we have before the collision the
particles’ velocities ⃗̃𝑢

1
= �̃�𝜂, ⃗̃𝑢

2
= −�̃�𝜂, and after the

collision ⃗̃𝑢
∗

1
= �̃�𝜂

∗, ⃗̃𝑢
∗

2
= −�̃�𝜂

∗. (As it is typical in the
analysis of collision processes, for a more general collision
we would obtain constraints on the final velocities, which are
not essential in order to fix the form of the function 𝑓( ⃗̃𝑢)

introduced in (116), (117).) According to 𝑆
, we obtain from

(90)

⃗̃𝑢


1
= (

2𝑐

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
+ �̃��⃗�)

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
+ �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂)

−1

,

⃗̃𝑢


2
= (

2𝑐

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
− �̃��⃗�)

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
− �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂)

−1

,

⃗̃𝑢
∗

1
= (

2𝑐

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
+ �̃��⃗�
∗
)

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
+ �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂
∗
)

−1

,

⃗̃𝑢
∗

2
= (

2𝑐

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
− �̃��⃗�
∗
)

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
− �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂
∗
)

−1

(114)

with

�⃗� := 𝜂 +
2

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
⋅ 𝜂

⃗𝛽

𝛼
,

�⃗�
∗
:= 𝜂
∗
+

2

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
⋅ 𝜂
∗

⃗𝛽

𝛼

(115)

being two vectors having arbitrary directions due to their
dependence on the arbitrary unit vectors 𝜂, 𝜂∗. Following [5],
we write for the momentum conservation in the frame 𝑆

𝑓 ( ⃗̃𝑢
1
) ⃗̃𝑢
1
+ 𝑓 ( ⃗̃𝑢

2
) ⃗̃𝑢
2
= 𝑓( ⃗̃𝑢

∗

1
) ⃗̃𝑢
∗

1
+ 𝑓( ⃗̃𝑢

∗

2
) ⃗̃𝑢
∗

2
(116)

and relative to 𝑆
 it becomes (assuming that the form of the

function 𝑓 is invariant)

𝑓( ⃗̃𝑢


1
) ⃗̃𝑢


1
+ 𝑓( ⃗̃𝑢



2
) ⃗̃𝑢


2
= 𝑓( ⃗̃𝑢

∗

1
) ⃗̃𝑢
∗

1
+ 𝑓( ⃗̃𝑢

∗

2
) ⃗̃𝑢
∗

2
(117)
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that is equivalent to

�̃��⃗�
{

{

{

(𝑓( ⃗̃𝑢


1
))

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
+ �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂)

−1

− (𝑓 ( ⃗̃𝑢


2
))

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
− �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂)

−1

}

}

}

− �̃��⃗�
∗
{

{

{

(𝑓( ⃗̃𝑢
∗

1
))

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
+ �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂
∗
)

−1

− (𝑓 ( ⃗̃𝑢
∗

2
))

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)

− �̃�
2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂
∗
)

−1

}

}

}

+
⃗𝛽

𝛼

2𝑐

1 − (𝛽2/𝛼2)

×
{

{

{

(𝑓( ⃗̃𝑢


1
))

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
+ �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂)

−1

+ (𝑓 ( ⃗̃𝑢


2
))

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
− �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂)

−1

− (𝑓 ( ⃗̃𝑢
∗

1
))

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
+ �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂
∗
)

−1

− (𝑓 ( ⃗̃𝑢
∗

2
))

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)

− �̃�
2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂
∗
)

−1

}

}

}

= 0.

(118)

From the arbitrariness of the scattering directions 𝜂, 𝜂∗, we
must have

(𝑓 ( ⃗̃𝑢


1
))(

1 + (𝛽
2
/𝛼
2
)

1 − (𝛽2/𝛼2)
+ �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂)

−1

= (𝑓 ( ⃗̃𝑢


2
))

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
− �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂)

−1

= (𝑓 ( ⃗̃𝑢
∗

1
))

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
+ �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂
∗
)

−1

= (𝑓 ( ⃗̃𝑢
∗

2
))

× (
1 + (𝛽

2
/𝛼
2
)

1 − (𝛽2/𝛼2)
− �̃�

2

𝑐 (1 − (𝛽2/𝛼2))

⃗𝛽

𝛼
⋅ 𝜂
∗
)

−1

.

(119)

In order to satisfy this condition we notice that from (91) we
obtain

√

1 −

�̃�
2

𝑐2



= (√


1 − (

�̃�
2

𝑐2
)


)

× (



1 + (𝛽
2
/𝛼
2
)

1 − (𝛽2/𝛼2)
+

2

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
⋅

⃗̃𝑢

𝑐



)

−1

.

(120)

For both cases we analyzed in Sections 4.3.1, 4.3.2, we observe
that 𝛽/𝛼 < 1 and for the case of a subluminal particle, that is,
𝑢 < 𝑐, 𝑢


< 𝑐, we obtain

1 + (𝛽
2
/𝛼
2
)

1 − (𝛽2/𝛼2)
+

2

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
⋅

⃗̃𝑢

𝑐
> 0 (121)

which suggest us to take for 𝑓(�̃�) the following expression:

𝑓 (�̃�) =
𝑘

√1 − (�̃�2/𝑐2)

. (122)
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In the case of a superluminal particle, that is, 𝑢 > 𝑐, 𝑢

> 𝑐,

we have in general

1 + (𝛽
2
/𝛼
2
)

1 − (𝛽2/𝛼2)
+

2

1 − (𝛽2/𝛼2)

⃗𝛽

𝛼
⋅

⃗̃𝑢

𝑐
< 0 (123)

which suggest us to take

𝑓 (�̃�) =
𝑘 sgn [1 + (𝛽

2
/𝛼
2
) + 2 ( ⃗𝛽/𝛼) ⋅ ( ⃗̃𝑢/𝑐)]

√
1 − (�̃�2/𝑐2)



. (124)

The constant 𝑘 is identified with the rest mass of the particle
in the case that one can effectively define such frame. In the
case of tachyons we refer to the discussion of [13]. The term
in the numerator, sgn[1 + (𝛽

2
/𝛼
2
) + 2( ⃗𝛽/𝛼) ⋅ ( ⃗̃𝑢/𝑐)], becomes

necessary in order to fulfill the conservation of momentum
as expressed in condition (119). This term introduces a
dependence of the tachyonmasswith the quantity ⃗𝛽/𝛼, which
is ultimately a parameter depending on the relative velocity
between the frames. A detailed discussion on the implications
of this term may be found in [13].

5. An Alternative Way to Induce a Concept of
Absolute Time

The concept of the absolute time was introduced in models
I and II by means of certain relations involving the space
and time variables, (5), (104). These relations may be seen as
kinematical requirements allowing to bring the special and
the Galilei relativity into the models. In this view, we could
think on the physical and the absolute time without having
to consider them as coordinates of a 4-dimensional space.
Now, we reverse the construction and we will show that by
considering a higher dimensional space, we can think on the
absolute time with no reference to kinematical relations.

5.1. Setting the Lorentz Transformation in R(1,4). We denote
by R(1,4) the space R5 endowed with the quadratic form

𝑄 (𝑥
𝑎
) = −(𝑥

0
)
2

+ (𝑥
1
)
2

+ (𝑥
2
)
2

+ (𝑥
3
)
2

+ (𝑥
4
)
2

. (125)

Here R(1,4) ∋ 𝑥 ≡ (𝑥
𝑎
), 𝑎 = 0, 1, 2, 3, 4. The transformations

leaving 𝑄 invariant have the form

𝑥
𝑎
:= Λ
𝑎

𝑏
𝑥
𝑏 (126)

with [Λ
𝑎

𝑏
] ∈ 𝑆𝑂(1, 4). We consider now two subgroups

of 𝑆𝑂(1, 4) as follows. The first consists of transformations
defined by matrices

𝐿
Λ
:= [

Λ
𝜇

] 0
0 1

] (127)

with Λ ∈ 𝑆𝑂(1, 3) (𝜇, ] = 0, 1, 2, 3). The second consists on
transformations defined by matrices

𝐿R := [
1 0
0 R𝑖
𝑗

] (128)

withR ∈ 𝑆𝑂(4) (𝑖, 𝑗 = 1, 2, 3, 4).

Now, we define new coordinates as follows.

(i) (𝑥𝑎/𝑥4) = (𝑥
𝜇
, 1) with 𝑥

𝜇
≡ 𝑥
𝜇
/𝑥
4. For the subgroup

{𝐿
Λ
} ⊂ 𝑆𝑂(1, 4) the transformation (126) becomes

𝑥
𝜇
= Λ
𝜇

]𝑥
]

𝑥
4
= 𝑥
4 (129)

and in particular

𝑥
𝜇
= Λ
𝜇

]𝑥
]
. (130)

(ii) (𝑥𝑎/𝑥0) = (1, 𝑥
𝑖
), with 𝑥

𝑖
≡ 𝑥
𝑖
/𝑥
0. For the subgroup

{𝐿R} ⊂ 𝑆𝑂(1, 4) the transformation (126) becomes

𝑥
0
= 𝑥
0
, 𝑥

𝑖
= R
𝑖

𝑗
𝑥
𝑗 (131)

and in particular

𝑥
𝑖
= R
𝑖

𝑗
𝑥
𝑗
. (132)

We notice that these coordinates 𝑥 ≡ (𝑥
𝜇
) and 𝑥 ≡ (𝑥

𝑖
)

cannot be identified with the coordinates of the hyperplanes
𝑥
0
= 0, 𝑥4 = 0 of R(1,4).

5.2. Inducing Lorentz Transformation in Euclidean Space R4.
There is a natural way to reinterpret the coordinates 𝑥 =

(𝑥
𝜇
), 𝑥 = (𝑥

𝑖
) as local coordinates on certain open sets

of the real projective space RP4 [14]. In fact, let RP4 ∋

[𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
] := {𝜆(𝑥

0
, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) : 𝜆 ∈ R∗}. Recall

that a smooth atlas forRP4 is given by {(𝑉
𝑎
, 𝜑
𝑎
)}
𝑎=0,...,4

, where
𝑉
𝑎
:= {[𝑥

0
, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
] : 𝑥
𝑎

̸= 0} and

𝜑
𝑎
: 𝑉
𝑎
→ R

4

[𝑥] ≡ [𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
]

→ 𝜑
𝑎
([𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
])

:= (
𝑥
0

𝑥𝑎
, . . . ,

𝑥
𝑎−1

𝑥𝑎
,
𝑥
𝑎+1

𝑥𝑎
, . . . ,

𝑥
4

𝑥𝑎
)

(133)

which shows that 𝑥 = 𝜑
4
([𝑥]) and 𝑥 = 𝜑

0
([𝑥]). (Notice that

the spaceR4, appearing as the image of the homeomorphisms
𝜑
𝑎
, is not seen as a subset of R(1,4).)
The transformation on R(1,4), 𝑥𝑎 = Λ

𝑎

𝑏
𝑥
𝑏, induces a

transformation on RP4 : [𝑥] → [Λ𝑥] that has the particular
cases

[𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
]
𝐿
Λ

→ [Λ
0

𝛼
𝑥
𝛼
, Λ
1

𝛼
𝑥
𝛼
, Λ
2

𝛼
𝑥
𝛼
, Λ
3

𝛼
𝑥
𝛼
, 𝑥
4
] ,

[𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
]
𝐿R

→ [𝑥
0
,R
1

𝑖
𝑥
𝑖
,R
2

𝑖
𝑥
𝑖
,R
3

𝑖
𝑥
𝑖
,R
4

𝑖
𝑥
𝑖
] .

(134)

Therefore, 𝜑
4
∘ 𝐿
Λ
∘ 𝜑
−1

4
reduces to an ordinary Lorentz

transformation in 𝜑
4
(𝑉
4
) ≃ R4 : 𝑥

𝜇
→ 𝑥

𝜇
= Λ
𝜇

]𝑥
],

while 𝜑
0
∘ 𝐿R ∘ 𝜑

−1

0
reduces to a 4-dimensional rotation in

𝜑
0
(𝑉
0
) ≃ R4 : 𝑥𝑖 → 𝑥

𝑖
= R𝑖
𝑗
𝑥
𝑗. We have then modelled
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Minkowski and Euclidean four-space as homeomorphic to
open sets 𝜑

4
(𝑉
4
), 𝜑
0
(𝑉
0
) of projective space, where Lorentz

and 4-dimensional rotations are induced by transformations
(129), (131) of 𝑆𝑂(1, 4) acting inR5. In the intersection of the
neighborhoods, 𝑉

0
∩ 𝑉
4
, we have 𝑥𝑖 = 𝜑

0
∘ 𝜑
−1

4
(𝑥), that is,

𝑥
1
=
𝑥
1

𝑥0
, 𝑥

2
=
𝑥
2

𝑥0
, 𝑥

3
=
𝑥
3

𝑥0
, 𝑥

4
=

1

𝑥0
. (135)

Therefore, in the intersection 𝑉
0
∩ 𝑉
4
an ordinary Lorentz

transformation on 𝜑
4
(𝑉
4
), 𝑥𝜇 → 𝑥

𝜇
= Λ
𝜇

]𝑥
], induces on

𝜑
0
(𝑉
0
) the transformation

𝑥
𝑖
→ 𝑥

𝑖
=
𝐿
𝑖

Λ0
+ 𝐿
𝑖

Λ𝑗
𝑥
𝑗

𝐿0
Λ0

+ 𝐿0
Λ𝑗

𝑥𝑗
(136)

that also obeys a group law, for example,

𝑥
Λ
(1)

→ 𝑥
(1)

Λ
(2)

→ 𝑥
(2)

↓ ↓ ↓

𝑥
𝐿
(1)

→ 𝑥
(1)

𝐿
(2)

→ 𝑥
(2)

≡

𝑥
Λ
(2)
Λ
(1)

→ 𝑥
(2)

↓ ↓

𝑥
𝐿
(2)
𝐿
(1)

→ 𝑥
(2)

(137)

That is,

𝑥
𝑖

(2)
=

(𝐿
(2)
𝐿
(1)
)
𝑖

0
+ (𝐿
(2)
𝐿
(1)
)
𝑖

𝑗
𝑥
𝑗

(𝐿
(2)
𝐿
(1)
)
0

0
+ (𝐿
(2)
𝐿
(1)
)
0

𝑗
𝑥𝑗

. (138)

Equation (136) may be seen as a nonlinear realization of the
Lorentz group in 𝜑

0
(𝑉
0
).

5.3. Interpreting the Boost Transformation in Euclidean Space
R4. Now, let us introduce somephysics in our analysis. So far,
we have considered homogeneous coordinates 𝑥, 𝑥 that carry
no dimension. In order to give a physical meaning to them
let us assume that there is a scale factor 𝜆 with dimension
of length and let us define 𝑦

𝑖
:= 𝜆𝑥

𝑖, 𝑦𝑖 := 𝜆

𝑥
𝑖. Here 𝜆



is the transformed scale factor whose form is left arbitrary
for a moment. Then, transformation (136) may be seen as a
transformation

𝑦
𝑖
→ 𝑦

𝑖
= 𝜆

𝐿
𝑖

Λ0
𝜆 + 𝐿
𝑖

Λ𝑗
𝑦
𝑗

𝐿0
Λ0
𝜆 + 𝐿0
Λ𝑗

𝑦𝑗
. (139)

For a boost we have Λ0
0
= 𝛾, Λ

0

𝑖
= Λ
𝑖

0
= −(𝛾/𝑐)V𝑖, Λ

𝑖

𝑗
=

𝛿
𝑖

𝑗
− (1 − 𝛾)(V𝑖V𝑗/V2), and we obtain

𝑦
𝑖
= 𝜆


𝑦
𝑖
− (1 − 𝛾) (𝑦

𝑗V𝑗/V2) V𝑖 − (𝛾/𝑐) 𝜆V𝑖

𝛾 (𝜆 − (1/𝑐) 𝑦𝑗V𝑗)
,

𝑦
4
= 𝜆


𝑦
4

𝛾 (𝜆 − (1/𝑐) 𝑦𝑗V𝑗)
,

(140)

where 𝑖 = 1, 2, 3. Now, let us assume that the scale factor
writes as 𝜆 = 𝑐𝑡


, 𝜆 = 𝑐𝑡 with 𝑐 being the speed of light

and 𝑡 and 𝑡
 having the dimension of time. Here, denoting

⃗𝑦 = (𝑦
𝑖
), V⃗ = (V𝑖) (140) becomes

⃗𝑦

= 𝑡


⃗𝑦 − (1 − 𝛾) (( ⃗𝑦 ⋅ V⃗) /V2) V⃗ − 𝛾𝑡V⃗

𝛾 (𝑡 − (( ⃗𝑦 ⋅ V⃗) /𝑐2))
,

𝑦
4
= 𝑡


𝑦
4

𝛾 (𝑡 − (( ⃗𝑦 ⋅ V⃗) /𝑐2))
.

(141)

If 𝑡 = 𝛾(𝑡 − (( ⃗𝑦 ⋅ V⃗)/𝑐2)), we obtain

⃗𝑦

= ⃗𝑦 − (1 − 𝛾)

⃗𝑦 ⋅ V⃗

V2
V⃗ − 𝛾𝑡V⃗,

𝑦
4
= 𝑦
4
.

(142)

Equation (142) together with 𝑡 = 𝛾(𝑡−(( ⃗𝑦 ⋅ V⃗)/𝑐2)) constitutes
the standard transformation of special relativity, and 𝑦

4
=

𝑦
4 can be considered as defining the absolute time, for

example, 𝜏 ≡ 𝑦
4
/𝑐 = 𝑦

4
/𝑐. In this way, the absolute time

acquires an intrinsic characteristic as the coordinate (in fact
with 𝑦

4
/𝑐) of a 4-dimensional Euclidean space R4 ≃ 𝜑

0
(𝑉
0
),

while the physical time of SR appears as a noninvariant scale
factor (through the relation 𝜆 = 𝑐𝑡, 𝜆


= 𝑐𝑡
) transforming

homogeneous coordinates 𝑥
𝑖 of Euclidean space R4 into

dimensional coordinates 𝑦
𝑖. If in addition we impose the

kinematical relation of the Galilei relativity, ⃗𝑦

= ⃗𝑦 − V⃗𝜏, we

end up with 𝜏 = (1 − 𝛾)(( ⃗𝑦 ⋅ V⃗)/V2)V⃗ + 𝛾V⃗𝑡.

6. Conclusion

In our work we have consistently unified the Galilei and the
Special relativities. In model I the main equations were �⃗� =
�⃗� − V⃗𝜏 and �⃗�

2
− 𝑐
2
𝑡
2
= �⃗�
2
− 𝑐
2
𝑡
2, while in model II we have

used �⃗�

= �⃗� − V⃗𝜏 and 𝜏 = 𝛼𝑥

0
+ ⃗𝛽 ⋅ �⃗� = 𝛼𝑥

0
− ⃗𝛽 ⋅ �⃗�

. Here,
contrarily to the intrinsic geometric meaning associated with
the relation �⃗�

2
− 𝑐
2
𝑡
2

= �⃗�
2
− 𝑐
2
𝑡
2, the role played by

𝛼𝑥
0
+ ⃗𝛽 ⋅ �⃗� = 𝛼𝑥

0
− ⃗𝛽 ⋅ �⃗�

 is not clear. If there is a certain
anisotropy in space, represented by a particular direction in
space (not necessarily related to the relative velocity of the
two frames), then we could encode it into ⃗𝛽. In this way, the
physics derived from the general transformation (85) may
provide a framework to describe situations other than the one
we contemplated in our work.

The assumption of the absolute time leads to a distinction
between the velocities V⃗ = 𝑑�⃗�/𝑑𝜏 and ⃗̃V = 𝑑 ⃗̃𝑥/𝑑𝑡. As we
have seen in (32), (113), theGalilei relativity imposes a relation
between these velocities in such way that Ṽ becomes less than
𝑐, which rules out tachyons since in SR we consider velocities
only as derivatives with respect to 𝑡. However, as we have
seen in model II, it is possible to have superluminal frames
provided we do not impose the existence of the absolute
time and the Galilei relativity. Having distinguished between
the absolute and the physical time, the assumption of the
constancy of the speed of light is understood only with
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respect to the derivative relative to the physical time. In fact,
as we have seen in the discussion of Section 3.4.2, for the light
speed calculated as a derivative relative to the absolute time,
we obtained 𝑐

𝑆
̸= 𝑐
𝑆
 .

Finally, the implications of the existence of an absolute
time in the formulation of a quantum theory are an old
topic. Dirac, for example, has used it in his attempt to
develop electrodynamics [15]. In the context of our work,
one possibility that arises is related to the development of
quantum theory following the Schwinger Quantum Action
Principle (SQAP). When applied to quantum mechanics this
approach uses an hamiltonian formalism that singles out the
time as parameter. Aswe have shown in [16], a consequence of
the application of a modified form of the SQAP to quantum
mechanics has lead to the commutator of the Lie algebra of
the Galilei group. Now, we could apply the same procedure
using the absolute time as parameter together with its relation
to the physical time as given by (76) and search for the
corresponding modifications that would originate in the
Galilei algebra. Then, we could check if it corresponds to the
group of transformation leaving the quantity 𝜏 = 𝛼𝑥

0
+ ⃗𝛽⋅ �⃗� =

𝛼𝑥
0
− ⃗𝛽 ⋅ �⃗�

 invariant.
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