Next:Entropy of Degree andUp:Properties of Unified Conditional
Previous:Multivariate Cases Go to:Table of Contents

Unified (r,s)-Mutual Information

In this section, we present six different ways to define the unified $ (r,s)-$mutual information.

Let us consider

$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_r(X\wedge Y)={\e......lpha{\ensuremath{\boldsymbol{\mathscr{H}}}}^s_r(X\vert Y),\,\, \alpha=1,2,3\,\,$and$\displaystyle \,\, 4,$
    (6.6)
and
$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_r(X\wedge Y\vert......ha{\ensuremath{\boldsymbol{\mathscr{H}}}}^s_r(X\vert Y,Z), \,\, \alpha=1,2,\,\,$and$\displaystyle \,\, 3,$
    (6.7)
where
$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_r=\left\{\begin{...... ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}},& r=1,\,s=1\end{array}\right.$
    (6.8)
and 
$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_r(.\wedge.)={\en......H}}}}^s_r(.)-\ ^\alpha{\ensuremath{\boldsymbol{\mathscr{H}}}}^s_r(.\vert.),\ $    etc.$\displaystyle $

 We call the measures $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_r(X\wedge Y)$ ($ \alpha =1,2,3$ and $ 4$) the unified $ (r,s)-$mutual information among the random variables $ X$ and $ Y$. The measures $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_r(X\wedge Y\vert Z)$ ($ \alpha=1,2$ and $ 3$) we call the unified $ (r,s)-$mutual information among the random variables $ X$ and $ Y$ given $ Z$.

Property 6.14. We have

(i) $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_r(X\wedge Y)\geq 0$(resp. $ \leq 0$) ($ \alpha =1,2,3$ and $ 4$), with equality iff $ X$ and $ Y$ are independent.
(ii) $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_r(X\wedge Y\vert Z)\geq 0$(resp. $ \leq 0$) ($ \alpha=1,2$ and $ 3$), with equality iff $ X$ and $ Y$ are independent given $ Z$.
The above property 6.12 holds under the following conditions:
($ c_1$) For $ \alpha =1$$ r>0$ with $ s\geq r$ or $ s \geq 2-\frac{1}{r}$ (resp. $ r<0$ with$ s\leq 1$ or $ 1<s\leq 2-\frac{1}{r}$);
($ c_2$) For $ \alpha=2$ and 3, $ r>0,\ s \in (-\infty ,\infty)$ (resp. $ r<0$ $ s \in (-\infty,\infty)$);
($ c_3$) For $ \alpha=4$$ r\geq s\geq 2-1/r\geq 1$ (resp. $ s \leq r < 0$) (only for part(i)).
Note 6.4. Similar to Shannon's entropy (property 1.51) we left for the readers to check the validity of the following inequality:

$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}_r^s(X,Y \wedge Z) ......a{\ensuremath{\boldsymbol{\mathscr{F}}}}_r^s(Y,Z)\,\,(\alpha=1,2 \, and \,3),$

i.e., to find the conditions on the parameters $ r$ and $ s$ for the validity of the above expression.

Property 6.15. We have

$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_r(X\wedge Z)+\ ^......suremath{\boldsymbol{\mathscr{F}}}}^s_r(X\wedgeZ\vert Y),\,\, \alpha = 1,2\,\,$and$\displaystyle \,\,3.$
    (6.9)
Note 6.5. The relation (6.9) is famous as "additive property". It also hold when $ \alpha=4$, but at moment, we are not aware of the conditons on $ r$ and $ s$ for which$ ^4{\ensuremath{\boldsymbol{\mathscr{F}}}}_r^s(X \wedge Y\vert Z)$ is nonnegative, but the particular case when $ r=s$ is discussed in section 6.4

For Simplicity, let us write 

$\displaystyle P_{XY} =\{p(x_i,y_j)\} \,\,$and$\displaystyle \,\,P_X \times P_Y = \{p(x_i)p(y_j)\}$
forall $ i=1,2,...,n; j=1,2,...,m$.

We have 

$\displaystyle F(X \wedge Y) = H(X) - H(X\vert Y)$
$\displaystyle =\sum_{i=1}^n \sum_{j=1}^m p(x_i,y_j)\log\left(\frac{p(x_i,y_j)}{p(x_i) p(y_j)}\right) = D\left(P_{XY}\vert\vert P_X \wedge P_Y\right),$

where $ D(P\vert\vert Q)$ is as given in (2.1)

We can write 

$\displaystyle F(X \wedge Y) = \sum_{i=1}^m p(y_j)D(P_{X\vert Y=y_j}\vert\vert P_X),$
where 
$\displaystyle D(P_{X\vert Y=y_j}\vert\vert P_X) = \sum_{i=1}^np(x_i\vert y_j) \log\left(\frac{p(x_i\vert y_j)}{p(x_i)}\right),$
for all$ j=1,2,\cdots,m.$

Thus 

$\displaystyle F(X \wedge Y) = D(P_{X\vert Y=y_j}\vert\vert P_X) =\sum_{i=1}^n p(y_j) D\left(P_{X\vert Y=j}\vert\vert P_X\right).$
The two more ways to define the unified $ (r,s)-$mutual information are given by
$\displaystyle ^5F_r^s(X \wedge Y) = \sum_{i=1}^n p(y_j) {\ensuremath{\boldsymbol{\mathscr{D}}}}_r^s(P_{X\vert Y=y_j}\vert\vert P_X),$
    (6.10)
$\displaystyle ^6F_r^s(X \wedge Y) = {\ensuremath{\boldsymbol{\mathscr{D}}}}_r^s(P_{XY}\vert\vert P_X \times P_Y),$
    (6.11)
where $ D_r^s(P\vert\vert Q)$ is as given by (4.1).

Property 6.16. For $ \alpha = 5$ and $ 6$, we have

(i) $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_r(X\wedge Y) = \, ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_r(Y\wedge X);$
(ii) $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_r(X\wedge Y)\left\{\begin{array}{ll}\geq 0, & r>0\\  \leq 0, & r<0\end{array}\right.$ with equality iff $ X$ and $ Y$ are independent.
(iii) $ ^5{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_r(X\wedge Y)\left\{\begin{array}{l......math{\boldsymbol{\mathscr{F}}}}^s_r(X\wedge Y), & s\leq r\end{array}\right.$
Note 6.6. If we consider the fifth and sixth way of unified $ (r,s)-$conditional entropies in the following way
$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{H}}}}_r^s(X\vert Y) = {\......th{\boldsymbol{\mathscr{F}}}}_r^s(X \wedge Y), \,\, (\alpha = 5 \,\,and\,\, 6),$
    (6.12)
then, we don't know for what values of $ r$ and $ s$ the measures given in (6.12) turn out to be nonnegative.

Note 6.7. Some of the above generalized mutual information measures can be connected to unified$ (r,s)-$divergence measures given in Chapter 5. These connections are as follows:

In (5.12), take $ \lambda_j = p(y_j)$ and $ p_{ij}= p(x_i\vert y_j)$, we get 

$\displaystyle ^1I_r^s(P_1,P_2,\cdots,P_M) = \,\,^5{\ensuremath{\boldsymbol{\mathscr{F}}}}_r^s(X \wedge Y).$

Similarly, we can write

$\displaystyle ^2I_r^s(P_1,P_2,\cdots,P_M) = \,\,^6{\ensuremath{\boldsymbol{\mathscr{F}}}}_r^s(X \wedge Y).$

$\displaystyle ^3I_r^s(P_1,P_2,\cdots,P_M) = \,\,^1{\ensuremath{\boldsymbol{\mathscr{F}}}}_r^s(X \wedge Y).$

In the notes 6.4 and 6.5, we have seen that there are difficulties in getting certain values of $ r$ and $ s$ for which the measures$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}_r^s(X \wedge Y\vert Z)$ or $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{H}}}}_r^s(X\vert Y)\,(\alpha=5$ and $ 6$) become nonnegative. But, in the particular case, when $ r=s$, the above difficulties are overcomed. The particular case for $ \alpha=4$ is discussed in the following subsection.
 


21-06-2001
Inder Jeet Taneja
Departamento de Matemática - UFSC
88.040-900 Florianópolis, SC - Brazil