
October 19, 2006 17:28 WSPC/171-JAA 00194

Journal of Algebra and Its Applications
Vol. 5, No. 5 (2006) 681–694
c© World Scientific Publishing Company

ON PRIME AND SEMIPRIME MODULES AND COMODULES

MIGUEL FERRERO

Instituto de Matemática
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In this paper we describe the structure of prime and semiprime R-modules M such that
R/AnnR(M) is artinian. The obtained results are then applied to describe the structure
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0. Introduction

Prime, strongly prime, semiprime and strongly semiprime modules and algebras
have been studied extensively in the last few years (see, for example, [3–5], [8]
and [14], and the literature quoted in these works).

For coalgebras and comodules over fields, as far as we know, a dual notion of
the notion of prime algebras, the coprime coalgebras, was introduced and studied
first in [10] and next in [6], but we do not know any paper extending the above
notions to corings and comodules.

In this paper we follow a different approach from the ones used in [10] and [6].
We will consider comodules over R-corings C, with some additional assumption,
which gives a more general context of that of comodules over coalgebras over fields.
Instead of taking a dual of the definition of prime modules to define a coprime
comodule, we consider a right comodule M over a coring C as a left ∗C-module,
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the dual algebra of C, and say that M is prime (semiprime, etc.) if it is prime
(semiprime, etc.) as a module over ∗C.

Section 1 is an introductory section. In Sec. 2 we consider left R-modules M such
that R/AnnR(M) is left artinian, where R is a ring. We describe prime (semiprime)
modules of this type in terms of simple modules. We prove that such a module M is
prime (semiprime) if and only if it is a direct sum of simple (semisimple) isomorphic
R-modules.

In Sec. 3, similar results are obtained for comodules over corings C over a
ring R, provided that the coring satisfies the left α-condition and R is a left perfect
ring. For example, a comodule is prime (in the above sense) if and only if it is a
direct sum of isomorphic simple comodules. Finally, in Sec. 4 we consider coalgebras
over commutative rings. The main result shows that, also under some additional
assumption, a coalgebra is prime if and only if it is simple and semisimple as a right
comodule over itself. The results proved in Secs. 3 and 4 hold, of course, when C is
a coalgebra over a field.

1. Prerequisites

For a ring R, modules over R will be considered as left R-modules and R-Mod
will denote the category of left R-modules. A left R-module M is said to be prime
if AnnR(M) = AnnR(N) for all nonzero submodule N of M , and is said to be
semiprime if rRrm = 0, for r ∈ R and m ∈ M , implies that rm = 0. It is easy to
see that a semisimple module is semiprime.

Given an R-module M , σ[M ] denotes the Wisbauer category of M(∗), i.e. the
category whose objects are all those R-modules subgenerated by M (all R-modules
which are isomorphic to submodules of M -generated modules) ( [13], p. 118). A
module M is said to be strongly prime if M is subgenerated by any of its nonzero
submodules, i.e. M ∈ σ[K] for all nonzero submodule K of M ([14], p. 95).

For a module N in σ[M ] we will denote the M -injective hull of M by N̂ , i.e. N̂

is injective in σ[M ] and an essential extension of N ([13], 17.8).
The following definitions can be found with more details in ([14], 9.1). A class

T of modules in σ[M ] is called a

(i) pretorsion class if T is closed under direct sums and factor modules;
(ii) hereditary pretorsion class if T is closed under direct sums, factor modules

and submodules;
(iii) hereditary torsion class if T is closed under direct sums, factor modules, sub-

modules and extensions in σ[M ].

The following result gives some equivalent conditions for a module to be strongly
prime.

(∗)This name has been recently suggested by P. Smith.
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Theorem 1.1. ( [14], 13.3) For an R-module M with M -injective hull M̂, the
following are equivalent:

(i) M is strongly prime;
(ii) M̂ is generated by each of its nonzero submodules;
(iii) M̂ has no non-trivial fully invariant submodules;
(iv) For any pretorsion (hereditary pretorsion) class T in σ[M ], T (M̂) = M̂ or

T (M̂) = 0 (T (M) = M or T (M) = 0);
(v) For each 0 �= x ∈ M and y ∈ M there exist r1, r2, . . . , rn ∈ R such that⋂n

i=1 AnnR(rix) ⊆ AnnR(y).

By Theorem 1.1, a left R-module P is strongly prime if and only if for any
x, y ∈ P , x �= 0, there exists a1, . . . , an ∈ R such that

⋂n
j=1 AnnR(ajx) ⊆ AnnR(y).

A stronger definition is given in [4]. In fact, in Definition 1.6 of that paper P is
said to be strongly prime if for any 0 �= x ∈ P there exists a1, . . . , an ∈ R such that⋂n

j=1 AnnR(ajx) = AnnR(M). In this case we say here that P is strongly prime in
the sense of Dauns.

Using (iv) of the above theorem the following is easy to prove.

Corollary 1.2. Any direct sum of isomorphic strongly prime modules is a strongly
prime module.

Now we recall the definition of strongly semiprime modules. For an R-module
M we put T = EndR(M̂), the set of all R-endomorphisms of the M -injective hull
M̂ of M . Let K be a submodule of M̂ and L ∈ σ[M ]. The trace of σ[K] in L is
defined by

T K(L) =
∑

{U ⊆ L | U ∈ σ[K]}.

The hereditary torsion class in σ[M ] determined by T̂K ⊆ M̂ is given by

TK(L) =
∑

{U ⊆ L | HomR(U, T̂K) = 0}.

We have the following:

Proposition 1.3. ([14], 14.3) The following conditions are equivalent:

(i) M/TK(M) ∈ σ[K].

(ii) M̂ = TK ⊕ ̂TK(M̂).

A module M is said to be strongly semiprime if the equivalent conditions above
are satisfied for any submodule K of M . It is easy to see that semisimple modules
are strongly semiprime.

For the basic notions on corings, coalgebras and comodules we refer the reader
to [1] and [2]. Here we consider a coring over a left perfect ring R that satisfies
an additional condition called the left α-condition. We will quote [1] several times.
In so doing, we refer to particular results there by writing simply (19.2) meaning
(19.2) of [1], for example (in this case to the definition of the left α-condition).
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2. Prime and Semiprime Modules

In this section we denote by CR the full subcategory of the category R-Mod whose
objects are all left R-modules M such that R/AnnR(M) is a left artinian ring. Of
course, if R is left artinian, then CR = R-Mod. As usual the class of objects of CR

will be denoted simply by CR.
Recall that an abelian category A is an additive category such that if f : X → Y

is a morphism in A, then Ker(f) and Coker(f) are in A and the induced morphism
f̄ : Coim(f) → Im(f) is an isomorphism.

Proposition 2.1. The category CR is an abelian category.

Proof. It is enough to prove that CR is closed under subobjects, factor objects and
finite direct sums. If M ∈ CR and N is a submodule of M , then we have AnnR(N) ⊇
AnnR(M) and AnnR(M/N) ⊇ AnnR(M). It follows that N, M/N ∈ CR. Also
suppose Mi ∈ CR, i = 1, 2. Then AnnR(M1 ⊕ M2) = AnnR(M1) ∩ AnnR(M2) and
so R/AnnR(M1 ⊕ M2) is left artinian. Thus M1 ⊕ M2 ∈ CR.

In general CR is not closed under arbitrary direct sums. To see this it is enough
to take a ring R which is not left artinian but which has an infinite family of left
ideals (Ii)i such that

⋂
i Ii = 0 and R/Ii is left artinian for any i. Then

∑
i ⊕R/Ii

is not in CR.
On the other hand, it is clear that if (Mi)i∈Ω is any family of isomorphic left

R-modules in CR, then
∑

i∈Ω ⊕Mi ∈ CR.

Corollary 2.2. Assume that M ∈ CR. Then σ[M ] is a subcategory of CR.

Proof. By the above remark any direct sum of copies of M is in CR. Apply Propo-
sition 2.1 to complete the proof.

Recall that a ring R is said to be right perfect if R/J(R) is left artinian and
J(R) is right T -nilpotent, where J(R) denotes the Jacobson radical of R. It is well-
known that if R is a right perfect ring, then any nonzero left R-module contains a
simple submodule ([8], Theorem 23.20).

Example 2.3. If R is a right perfect ring and M is a prime left R-module, then
M ∈ CR. In fact, if N is a simple submodule of M we have AnnR(M) = AnnR(N) ⊇
J(R) and so R/AnnR(M) is a factor ring of R/J(R). Hence R/AnnR(M) is left
artinian. We obtain the same conclusion if M is a prime left R-module such that
R/AnnR(M) is a right perfect ring.

The following gives some properties of modules in CR.

Proposition 2.4. Assume that M ∈ CR. Then M has a simple submodule. If, in
addition, M is a prime module, then R/AnnR(M) is a simple artinian ring and all
simple submodules of M are isomorphic.
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Proof. The first part is clear since under the assumption R/AnnR(M) is a
right perfect ring and so has a simple submodule, and any simple R/AnnR(M)-
submodule of M is a simple R-submodule.

Now suppose that M is any prime module in CR. If N is a simple submodule
of M we have AnnR(M) = AnnR(N) and so the factor ring S = R/AnnR(M) is
left primitive and artinian, so simple artinian. Also any simple left module over S

is isomorphic to N . The result follows.

Now we can prove one of the main results of this section.

Theorem 2.5. Assume that M ∈ CR. Then the following conditions are equivalent:

(i) M is a prime R-module;
(ii) M is a strongly prime R-module;
(iii) M =

∑
i∈Ω ⊕Mi, where (Mi)i∈Ω is a family of isomorphic simple submodules

of M ;
(iv) M is a sum of isomorphic simple submodules;
(v) The ring R/AnnR(M) is simple.

Proof. (iii) ⇔ (iv) and (ii) ⇒ (i) are obvious. Proposition 2.4 gives (i) ⇒ (v).
(v) ⇒ (iii) By assumption R/AnnR(M) is a simple artinian ring and so any left

R/AnnR(M)-module is semisimple. Thus (iii) follows from Proposition 2.4.
(iii) ⇒ (ii). This is an easy consequence of Corollary 1.2 and the fact that any

simple left R-module is strongly prime.

Corollary 2.6. Assume that M is a left R-module such that R/AnnR(M) is a
right perfect ring. Then the conditions (i)−(v) of Theorem 2.5 are equivalent.

Proof. If M is an R-module satisfying one of the conditions of Theorem 2.5, then
M is prime and so by, Example 2.3, M ∈ CR. The result follows.

Any prime module M in CR is semisimple. Then M is injective in σ[M ] and so
M = M̂ , where M̂ is the injective hull of M in σ[M ]. Thus by Theorem 1.1 we have
the following

Corollary 2.7. Assume that M ∈ CR. Then the following conditions are equivalent:

(i) M is prime;
(ii) M is generated by each of its nonzero submodules;
(iii) M has no fully invariant non-trivial submodules;
(iv) For any pretorsion class T in σ[M ], T (M) = M or T (M) = 0.

Now we will consider semiprime modules in CR. The following is certainly well-
known and easy to prove.

Lemma 2.8. For any R-module M we have
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(i) If M is semiprime and faithful, then R is a semiprime ring.
(ii) M is a semiprime R-module if and only if M is a semiprime module over

R/AnnR(M).

We denote the socle of M by s(M), i.e. s(M) is the sum of all simple submodules
of M . If M ∈ CR, by Proposition 2.4, s(M) is an essential submodule of M .

Theorem 2.9. Assume that M ∈ CR. Then the following conditions are equivalent:

(i) M is semiprime;
(ii) M is semisimple;
(iii) M is strongly semiprime.

Proof. Since (ii) implies (i) and (iii) we only need to prove the converses.
(i) ⇒ (ii) If M is semiprime, then by Lemma 2.8 R/AnnR(M) is a semiprime

ring. Also R/AnnR(M) is left artinian and thus it is semisimple. Hence M is a
semisimple R-module.

(iii) ⇒ (ii) If M is strongly semiprime, then by ([14], 14.4) M is subgener-
ated by any essential submodule. Thus M is subgenerated by s(M) and so it is
semisimple.

Corollary 2.10. Assume that M ∈ CR. Then the following conditions are
equivalent:

(i) M is semiprime;
(ii) M is a direct sum of prime submodules;
(iii) M is a sum of prime submodules;
(iv) Any submodule N of M which is a semiprime module is a direct summand

of M .

Proof. (i) ⇔ (ii) ⇔ (iii) ⇒ (iv) are easy to prove since any semiprime module is
semisimple.

(iv) ⇒ (iii) Suppose that s(M) is a proper submodule of M . Since s(M) is
semisimple and so semiprime, by (iv) there exists a submodule N with s(M) ⊕
N =M . This is a contradiction because s(M) is essential in M .

A submodule N of a module M is said to be prime in M if M/N is a prime
module. In ([3], Proposition 1.20) J. Dauns proved that if the intersection of all
submodules which are prime in M is zero, then M is semiprime. Also, in ([4] and [5])
he asked the question of whether the converse is true. The answer to this question
is negative as we can see in the example given in ([7], p. 3600). As a consequence
of Theorem 2.9 we obtain that the converse holds for modules in CR.

Corollary 2.11. Assume that M ∈ CR. Then M is semiprime if and only if the
intersection of all submodules which are prime in M is zero.
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Proof. If M is semiprime we have M =
∑

i∈Ω ⊕Mi, where Mi is simple for any i.
Take Ni =

∑
j �=i ⊕Mj < M . Then Ni is a submodule which is prime in M and⋂

i∈Ω Ni = 0.

The proof of the above corollary also shows that a module in CR is semiprime
if and only if the intersection of its maximal submodules is zero.

3. Prime and Semiprime Comodules

Throughout this section R denotes an associative algebra (with unit) over a com-
mutative ring and C an R-coring. The set ∗C of all left R-linear maps from C to
R is a ring. Comodules will be always right comodules and they will be considered
as left ∗C-modules ([1], Chapter 3).

We will assume in this section that C satisfies the left α-condition which is
equivalent to saying that C is locally projective as a left R-module (19.2). In this
case C is a flat left R-module and the category of right C-comodules is the full
subcategory of the category of left ∗C-modules which is subgenerated by ∗CC (19.3).
Also we will assume that R is a left perfect ring.

We now define different types of comodules using the corresponding definitions
for modules.

Definition 3.1. A right C-comodule M is said to be prime (resp. strongly prime,
semiprime, strongly semiprime) if the corresponding ∗C-module ∗CM is prime (resp.
strongly prime, semiprime, strongly semiprime).

As we already said in the introduction if k is a field and C is a coalgebra
over k, there is a more extensive definition used in the literature (see, for example,
the definition of coprime coalgebras given in [6] and [10]). We will see from our
results that the definitions used here are much more restrictive. However we will
obtain complete results characterizing these types of comodules in terms of simple
comodules.

The results of this section are consequences of the results of Sec. 2 because of
the following

Proposition 3.2. Assume that M is a prime right comodule over an R-coring
C which satisfies the left α-condition, where R is a left perfect ring. Then
∗C/Ann∗C(M) is a simple artinian ring.

Proof. Using (19.12,1) and (19.16,2) we can easily see that the left ∗C-module M

has a simple subcomodule (so a simple ∗C-submodule) N and also we can write
N =

∑n
i=1 xiR, for nonzero elements xi ∈ M , 1 ≤ i ≤ n.

Since ∗C/Ann∗C(xi) � ∗Cxi = N it follows that Ann∗C(xi) is a maximal
left ideal of ∗C, for 1 ≤ i ≤ n. Since M is prime Ann∗C(M) = Ann∗C(N) =
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⋂n
i=1 Ann∗C(xi) and therefore there is a canonical injection

φ : ∗C/Ann∗C(M) →
n∑

i=1

⊕∗C/Ann∗C(xi).

Consequently ∗C/Ann∗C(M) is a left artinian ring which is clearly also left primi-
tive. The proof is complete.

A C-comodule M is called strongly prime in the sense of Dauns if M is a strongly
prime ∗C-module in the sense of Dauns.

Now we can prove the main results of this section.

Theorem 3.3. Assume that C is an R-coring which satisfies the left α-condition
and M is a right comodule over C, where R is a left perfect ring. Then the following
conditions are equivalent:

(i) M is prime;
(ii) M is strongly prime;
(iii) M =

∑
i∈Ω

⊕
Mi, where (Mi)i∈Ω is a family of isomorphic simple subcomod-

ules of M ;
(iv) ∗C/Ann∗C(M) is a simple artinian ring;
(v) M is a strongly prime comodule in the sense of Dauns.

In particular, if the above conditions hold, then M is in the category C∗C .

Proof. It is clear that (iii) ⇒ (ii) ⇒ (i) and (i) ⇒ (iv) by Proposition 3.2. Also
(iv) ⇒ (iii) follows from Theorem 2.5. Since (v) clearly implies (i) we need to prove
only the converse.

Assume that (i) holds and take 0 �= x ∈ M . Then ∗Cx is finitely gener-
ated as a right R-module and, as in the proof of Proposition 3.2, Ann∗C(M) =
Ann∗C(∗Cx) =

⋂n
i=1 Ann∗C(xi), for some xi ∈ ∗Cx. Thus for any i there exist

∗ci ∈ ∗C such that xi = ∗cix and (v) follows. The proof is complete.

Corollary 3.4. Assume that C is an R-coring which satisfies the left α-condition,

where R is a left perfect ring. If there exists a prime right comodule which is faithful
as a left ∗C-module, then any left C∗-module is a right comodule.

Proof. By Theorem 3.3, ∗C is a simple artinian ring. Hence using (18.12,2)
EndC∗(CC∗) = CEnd(C) � ∗C is simple artinian. Thus by ([13], 20.8), the right
C∗-module C is finitely generated. Finally, by the left α-condition, C is locally
projective as a left R-module. The result follows from (19.6).

From Corollary 2.7 we immediately have:
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Corollary 3.5. Assume that M is a right C-comodule, where C and R satisfy the
above assumptions. Then the following conditions are equivalent:

(i) M is a prime comodule;
(ii) M is generated by each nonzero subcomodule of M ;
(iii) M has no fully invariant non-trivial subcomodules;
(iv) For any pretorsion class T in σ[M ]c we have either T (M) = M or T (M) = 0,

where σ[M ]c is the subcategory of all the comodules subgenerated by M .

Assume that C satisfies the left α-condition. If A is a subalgebra of ∗C we know
that A is dense in ∗C (in the finite topology of RC) if and only if the category of
right comodules over C is equal to the category σ[AC] (20.7). On the other hand
this category is also equal to σ[C∗C] by (19.3).

Corollary 3.6. Assume that C satisfies the left α-condition, A is subalgebra of ∗C
which is dense in ∗C and R is a left perfect ring. Given a right comodule M over
C, the conditions of (i)−(v) of Theorem 3.3 are equivalent for the left A-module M .
Moreover, M is a prime comodule if and only if M is a prime A-module.

Proof. The arguments of Proposition 3.2 can be repeated for the left A-module M .
Thus if M is a prime A-module, then A/AnnA(M) is simple artinian. The proof of
the first part can be completed in the same way as in the proof of Theorem 3.3.

On the other hand, since the categories σ[AC] and σ[∗CC] are equal the right
comodule M is subgenerated by each of its nonzero subcomodules if and only if
it is subgenerated by each of its nonzero A-submodules. This shows that M is a
strongly prime comodule if and only if it is a strongly prime A-module.

Now we assume that k is a field and C is a coalgebra over k. For a right comodule
M over C put I = AnnC∗(M). Recall that the subcoalgebra

AnnC∗(M)⊥ = {c ∈ C | f(c) = 0, for any f ∈ I}

of C is called the coalgebra associated to M . It is well-known that AnnC∗(M)⊥ is
the smallest subcoalgebra D of C such that M is a right comodule over D.

Let N be a simple comodule. Then the dual algebra (AnnC∗(N)⊥)∗ is isomor-
phic to C∗/AnnC∗(N) and so is finite dimensional, and the associated coalgebra
AnnC∗(N)⊥ is a simple coalgebra. Finally, two simple comodules are isomorphic if
and only if they have the same associated coalgebra ([2], Chapter 3).

In this case we have the following:

Corollary 3.7. Assume C is a coalgebra over a field and M is a right comodule
over C. Then the following conditions are equivalent:

(i) M is prime;
(ii) The coalgebra AnnC∗(M)⊥ associated to M is simple;
(iii) Any nonzero subcomodule of M has the same associated coalgebra.
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Proof. (i) ⇒ (iii) If M is prime and N is any subcomodule of M , then AnnC∗(N) =
AnnC∗(M). Thus the coalgebra associated to N is AnnC∗(M)⊥ and so (iii)
holds.

(iii) ⇒ (ii) Let N be a simple subcomodule of M . Then, by (iii), AnnC∗(M)⊥ =
AnnC∗(N)⊥ and also AnnC∗(N)⊥ is simple. Hence (ii) follows.

(ii) ⇒ (i) Since AnnC∗(M)⊥ is simple, C∗/AnnC∗(M) is simple artinian.
Also, for any subcomodule N of M , we have AnnC∗(M) ⊆ AnnC∗(N) and so
AnnC∗(M) = AnnC∗(N). Hence M is prime.

Now we come back to comodules over corings and consider semiprime
comodules. The next example shows that a semiprime comodule is not necessarily
in C∗C .

Example 3.8. Assume that (Ci)i≥1 is the family of matrix coalgebras Ci =
M c(i, k) over a field k, where dimk(Ci) = i2, and consider C =

∑
i≥1 ⊕Ci, the

direct sum of the simple coalgebras Ci. Note that ∗C = C∗ �
∏

i≥1 C∗
i , the

direct product of all the algebras C∗
i . It is clear that C is a semiprime left C∗-

modules and AnnC∗(C) = 0. However C∗/AnnC∗(C) � C∗ is not left artinian.

Even though a semiprime comodule is not necessarily in C∗C , we can reduce to
the case of Sec. 2 under an additional assumption: for the rest of the section we
assume that C satisfies the left α-condition and R is a right artinian ring.

We can write M =
∑

m∈M
∗Cm, so that M is semiprime if and only if ∗Cm is

semiprime, for every m ∈ M . We need the following

Lemma 3.9. Under the above assumptions, if ∗Cm is a semiprime ∗C-module,
then ∗Cm ∈ C∗C .

Proof. Put T = ∗C. Since Tm is a semiprime module T/AnnT (Tm) is a semiprime
ring. Also, by (19.16,3) Tm has finite length. Hence there exists a finite chain of
submodules 0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ St = Tm of Tm with simple factors. As in
the proof of Proposition 3.2 T/AnnT (Si+1/Si) is left artinian and it follows that
T/AnnT (Tm) is left artinian.

In fact, assume that t = 2. Note that T/AnnT (S1) and T/AnnT (S2/S1) are left
artinian and consider the natural T -homomorphism

j : AnnT (S1)/AnnT (S2) → T/AnnT (S2/S1)

induced by the inclusion. Suppose that a ∈ AnnT (S1) and a + AnnT (S2/S1) ∈
T/AnnT (S2/S1), then aTa ⊆ AnnT (S2). It follows that a ∈ AnnT (S2) since
AnnT (S2) is semiprime. Hence j is injective and so T/AnnT (S2) is left artinian.
The result follows by induction.

Recall that if C satisfies the left α-condition, then a right C-comodule M is
semisimple if and only if M is the sum of simple subcomodules (19.13).
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Theorem 3.10. Let M be a right C-comodule, where C satisfies the left α-
condition and R is right artinian. Then the following conditions are equivalent:

(i) M is semiprime;
(ii) M is strongly semiprime;
(iii) M is semisimple.

Proof. (iii) ⇒ (ii) ⇒ (i) are obvious.
Assume that (i) holds. Then M =

∑
m∈M

∗Cm, where ∗Cm is semiprime for
any m ∈ M . By Lemma 3.9 ∗Cm belongs to C∗C and so ∗Cm is a semisimple
∗C-module, by Theorem 2.9. Now the left α-condition for C implies that ∗Cm is a
semisimple comodule and thus M is semisimple.

Finally, Corollaries 2.10 and 2.11 immediately give the following.

Corollary 3.11. For a right comodule M the following conditions are equivalent:

(i) M is semiprime;
(ii) M is a direct sum of prime comodules;
(iii) M is a sum of prime comodules;
(iv) Any semiprime subcomodule of M is a direct summand.

Corollary 3.12. Assume that M is a right C-comodule. Then M is semiprime if
and only if the intersection of all subcomodules of M which are prime in M is zero.

4. Prime and Semiprime Coalgebras

Throughout this section C is a coalgebra over a commutative ring with unit R. It
is well-known that C is a right and left comodule over itself. Thus we can consider
C as a right and left C∗-bimodule and so a left module over C∗⊗C∗op, where C∗op

denotes the opposite algebra of C∗ and ⊗ means tensor product over R. We will
assume in the following that R is a perfect ring and C satisfies the α-condition.

Definition 4.1. A coalgebra C is said to be prime (semiprime) if it is a prime
(semiprime) left module over C∗ ⊗ C∗op.

We begin this section with the following

Proposition 4.2. Assume that C is a coalgebra over a perfect ring R that satisfies
the α-condition. Then the following are equivalent:

(i) C is prime;
(ii) C is a strongly prime left module over C∗ ⊗ C∗op;
(iii) C is a sum of isomorphic simple left C∗ ⊗ C∗op-modules;
(iv) C∗ ⊗ C∗op/AnnC∗⊗C∗op(C) is a simple artinian ring;
(v) C is generated by any nonzero C∗-subbimodules;
(vi) C has no fully invariant non-trivial C∗ ⊗ C∗op-submodule;
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(vii) For any pretorsion class T in σ[C∗⊗C∗opC] we have either T (C) = C or
T (C) = 0;

(viii) C is a strongly prime left C∗ ⊗ C∗op-module in the sense of Dauns.

Proof. Assume that C is a prime left C∗⊗C∗op-module. Using (4.12) and (41.22,3),
we easily see that C has a simple left C∗ ⊗ C∗op-submodule N which is finitely
generated over R. Now repeating the argument of the proof of Proposition 3.2 we
obtain that C∗ ⊗ C∗op/AnnC∗⊗C∗op(C) is a simple artinian ring. The remaining
part of the proof follows as in the proof of Theorem 3.3 and Corollary 3.5.

Condition (ii) of the above proposition should be compared with the definition
of strongly prime algebras. In fact, an algebra A over a commutative ring R is said
to be strongly prime if A is a strongly prime module over A ⊗R Aop ([14], p. 289).

Now we prove the main result of this section, showing that under our assumption
the prime coalgebras are always simple coalgebras.

Theorem 4.3. Let C be a coalgebra over a perfect ring R that satisfies the α-
condition. Then the following are equivalent:

(i) C is a simple coalgebra that is right (left) semisimple;
(ii) C is a simple module over C∗ ⊗ C∗op;
(iii) C is a prime coalgebra;
(iv) C is prime as right (left) C-comodule.

Proof. First note that C is faithful as a left (right) C∗-module (4.6,2). Also C is
projective over R, since by the α-condition C is flat and R is perfect.

(i)⇒ (ii) follows from (4.15) and (ii)→ (iii) is clear.
(iii)⇒ (iv) Assume that N is a nonzero left C∗-module of C. If c∗N = 0, then

c∗NC∗ = 0, where NC∗ is a C∗ ⊗C∗op-submodule of C. Thus (c∗ ⊗ 1C∗)NC∗ = 0
and so c∗C = (c∗⊗1C∗)C = 0. Therefore c∗ = 0 and consequently C is a prime left
C∗-module.

(iv)⇒ (i) If C is a prime right comodule, then C is a semisimple right
C-comodule by Theorem 3.3. Thus by (4.14) C is a direct sum of simple coalgebras.
However C is a prime left C∗-module and so it must be just a simple coalgebra.
In fact, if C = D ⊕ E for subcoalgebras D and E of C we have that for any
0 �= d∗ ∈ D∗ ⊆ C∗, d∗E = 0 and hence d∗ ∈ AnnC∗(C), which is a contradiction.

Example 4.4. Consider the matrix coalgebra C = M c(n, k) with basis
(eij)1≤i,j≤n, where k is a field. It is not hard to show that C, as a right comodule
over itself, is a direct sum of the simple subcomodules Il, 1 ≤ l ≤ n, where Il is the
k-subspace of C generated by {elk : 1 ≤ k ≤ n}.

Assume that C is a coalgebra over a field k. Then we can consider C as a right
comodule over the coalgebra C ⊗k Ccop, where Ccop is the co-opposite coalgebra
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of C. Thus C is a left module over (C ⊗k Ccop)∗ and it is known that C∗ ⊗k C∗op

is a dense subalgebra of (C ⊗k Ccop)∗ ([2], Ex. 1.3.4) . Then from Corollary 3.6 we
immediately have

Corollary 4.5. Assume that C is a coalgebra over a field k. Then C is a prime
coalgebra if and only if C is a prime comodule over C ⊗k Ccop.

Now we consider semiprime coalgebras.

Theorem 4.6. Assume that C is a coalgebra over a commutative artinian ring R

that satisfies the α-condition. Then C is semiprime if and only C is a semisimple
left module over C∗ ⊗ C∗op.

Proof. Using (4.12) and (4.16,3) we easily see as in Lemma 3.9 that for any c ∈ C

the factor ring C∗ ⊗ C∗op/AnnC∗⊗C∗op((C∗ ⊗ C∗op)c) is left artinian. The proof
can be completed as in Theorem 3.10.

To end the paper we relate our definition of prime coalgebras with the definition
of coprime coalgebras used in the literature (see, [10] and [6]).

Let C be a coalgebra over a field k. Recall that for subspaces X and Y of C,
the wedge X ∧ Y is defined as

X ∧ Y = ∆−1(X ⊗ C + C ⊗ Y ).

The following can be found in [10].

Definition 4.7. A nonzero subcoalgebra P of C is said to be coprime if for any
subcoalgebras X and Y of C we have that P ⊆ X ∧ Y implies either P ⊆ X or
P ⊆ Y .

In particular, C is a coprime coalgebra if for any subcoalgebras X and Y of C

with C = X ∧ Y we necessarily have that either C = X or C = Y . The notions of
prime and coprime coalgebras are related by the following

Proposition 4.8. Let C be a coalgebra over a field k. Then C is prime if and only
if C is coprime and finite dimensional over k.

Proof. If the coalgebra C is prime, then by Theorem 4.3 C is simple, so finite
dimensional, and by ([10], Proposition 1.3) C is coprime. Conversely, if C is a finite
dimensional coprime coalgebra, then by Theorem 1.1 of [10] C is simple and so C∗

is simple artinian. Hence C is prime.
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