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Abstract Localisation is an important technique in ring theory and yields the con-
struction of various rings of quotients. Colocalisation in comodule categories has
been investigated by some authors (see Jara et al., Commun. Algebra, 34(8):2843–
2856, 2006 and Nastasescu and Torrecillas, J. Algebra, 185:203–220, 1994). Here we
look at possible coalgebra covers π : D → C that could play the rôle of a coalgebra
colocalisation. Codense covers will dualise dense (or rational) extensions; a maximal
codense cover construction for coalgebras with projective covers is proposed. We
also look at a dual non-singularity concept for modules which turns out to be the
comodule-theoretic property that turns the dual algebra of a coalgebra into a non-
singular ring. As a corollary we deduce that hereditary coalgebras and hence path
coalgebras are non-singular in the above sense. We also look at coprime coalgebras
and Hopf algebras which are non-singular as coalgebras.
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1 Introduction

Embedding algebras into better ones where certain problems have solutions is one
of the major tools in ring theory. An analogous tool for coalgebras does not always
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exists. Instead of embedding a coalgebra into a better behaved coalgebra one could
also try to find a suitable better behaved coalgebra with a projection onto the first
one – a covering coalgebra.

The maximal ring of quotients Qmax(A) of an algebra A is such an example of a
universal object that has good properties in particular when the algebra in question
is non-singular. Recall that an algebra A is called left non-singular if left annihilators
of non-zero elements are never essential as left ideal. This conditions is a kind of
non-commutative torsion-freeness for A and Johnson’s theorem states that A is left
non-singular if and only if Qmax(A) is von Neumann regular, i.e. the weak global
dimension of Qmax(A) is zero.

Throughout the text we will assume that rings R are associative and have a
unit. Furthermore we shall write homomorphisms of modules opposite of scalars.
A submodule N of a left R-module M is called essential (small) if for all proper
non-zero L ⊂ M: N ∩ L �= 0 (N + L �= M). We denote a small submodule N of M
by N � M. Given a module M we denote by σ [M] the category of submodules of
factor modules of direct sums of copies of M (see [20]). For any pair of modules X
and Y we denote the trace of X in Y by Tr(X, Y ) = ∑{Im( f ) | f ∈ Hom(X, Y )}.

1.1 The Maximal Ring of Quotients

Given a ring R, an overring S of R is called a left ring of quotients if HomR−
(S/R, S ) = 0. The maximal left ring of quotients Qmax(R) of R is any left ring of
quotients such that for any left ring of quotients S of R with embedding j : R ↪→ S
there exists a unique ring homomorphism ϕ : S → Qmax(R) such that jϕ = ı where
ı : R ↪→ Qmax(R) denotes the embedding:

R
� �

j
��

��
ı

����������� S

ϕ�����������

Qmax(R)

The maximal left ring of quotients exists and can be constructed as follows: Let
E = E(R) be the injective hull of R as left R-module. Then

Qmax(R) := {x ∈ E | (x) f = 0∀ f ∈ End(E ) with (R) f = 0}.
By construction Qmax(R) is the submodule of E that satisfies Qmax(R)/R=Re

(E/R, E ). Where Re(X, Y )=⋂{Ke ( f ) | f : X →Y} denotes the reject of X in Y.

1.2 A Module-theoretic Approach to Covering Coalgebras

A module extension X ↪→ Y is called dense if Hom(Z/X, Y )=0 for all X ⊂ Z ⊂Y.
In [8] Findlay and Lambek proved that the maximal ring of quotient Q of a ring R
is the maximal dense extension of R in the category of R-modules. We will give a
module theoretic approach in covering coalgebras using codense covers of modules:

A module Y is called a cover of X if there exists an epimorphism π : Y � X. The
cover Y is said to be small if Ke (π ) � Y and a cover Y is called a codense cover
of X if Ke (π ) is a codense submodule of Y, that is Hom(Y, Ke (π )/L ) = 0 for all
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L ⊆ Ke (π ). As a dualisation of dense extensions, codense covers were introduced
by Courter in [5] where they are called co-rational extensions. Since the term rational
module has a different meaning in the coalgebraic setting, we prefer to refer to ‘dense
extensions’ and ‘codense covers’ instead. A non-trivial example of a codense cover is
the projection Q � Q/Z, which is codense since Hom(Q, Z/nZ ) = 0 for all n.

1.3 Some properties of codense covers can be easily checked:

Lemma Let Z be a cover of X in σ [M].
(1) If Z is a codense cover of X, then it is a small cover.
(2) If Z is a small cover of X and π : X � Y is a codense cover then Hom

(Z , Ke (π )) = 0.
(3) If Z is a projective cover of X in σ [M] then a cover π : X � Y is codense if and

only if Hom(Z , Ke (π ) ) = 0.

Proof

(1) Let π : Z � X be a codense cover. Suppose Ke (π ) + Y = Z , then the canon-
ical projection

Z → Z/Y 
 Ke (π )/(Ke (π ) ∩ Y )

is zero by hypothesis. Thus Z = Y and Ke (π ) � Z .
(2) Let p : Z → X be a small epimorphism and f ∈ Hom(Z , Ke (π ) ). Extending

f to an homomorphism

g : X = Z/Ke (p ) → Ke (π )/(Ke (p )) f,

mapping z + Ke (p ) �→ (z) f + (Ke (π )) f , we have g = 0 since X is a codense
cover of Y. Thus (Ke (p )) f = Im ( f ). But as (Ke (p )) f � Im ( f ), we must
have Im ( f ) = 0, i.e. f = 0.

(3) Since Z is projective cover of X there exists a small epimorphism p : Z � X.
For any U ⊆ Ke (π ) and f : X → Ke (π )/U we have pf : Z → Ke (π )/U .
Since Z is projective there exists g : Z → Ke (π ) which is zero by hypothesis.
Hence pf = 0 and f = 0 as p is an epimorphism. �

1.4 Dual to the definition of a maximal dense extension of a module, we define a
maximal codense cover as follows:

Definition 1 Let X, Y ∈ σ [M]. A codense cover p : Y � X is called a maximal
codense cover in σ [M] if for any codense cover π : Z � X there exists a unique
epimorphism ψ : Y → Z such that ψπ = p.

Z
π

�� �� X

Y

ψ

���������

p �� ���������

Note that our definition differs from Courter’s in [5].
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1.5 As it was to expect, in case projective covers exist a dual construction like
Findlay and Lambek’s allows to construct a maximal codense cover for modules:

Theorem Let X ∈ σ [M] have a projective cover P in σ [M]. Denote by π : P → X
the projection and T := Tr(P, Ke (π ) ). Then P̃ = P/T is a maximal codense cover of
X in σ [M] with induced epimorphism π̃ : P̃ → X.

Proof Note that Ke (π̃ ) = Ke (π )/T and as P is a projective cover of P̃, Hom
(P, Ke (π )/T) = 0. By Lemma 1.3 π̃ : P̃ � X is a codense cover. Let p : Z � X be
any other codense cover of X in σ [M]. By the projectivity of P there exist ψ : P → Z
such that ψp = π . As (T)ψp = (T)π = 0 we deduce

P Hom(P, Ke (π ) )ψ = Tψ ⊆ Ke (p ).

Since by Lemma 1.3 Hom(P, Ke (p ) ) = 0, (T)ψ = 0. Hence ψ lifts to a homomor-
phism ψ̃ : P̃ → Z with ψ̃ p = π̃ .

ψ̃ is unique because for any φ : P̃ → Z with φp = π̃ we have ψ − φ ∈ Hom
(P, Ke (p )) = 0 by Lemma 1.3 (here we consider φ as a map from P to Z ). Thus
ψ = φ. �

1.6 For a finite dimensional coalgebra C we prove now that D = (
Qr

max(C
∗)

)∗ is a
maximal codense cover of C in the category of right C-comodules:

Theorem Let C be a finite dimensional k-coalgebra, then D = (
Qr

max(C
∗)

)∗
is a

finite dimensional coalgebra and there exists a surjective coalgebra homomorphims
π : D → C whose kernel is small as a right C-subcomodule of D. In particular
D = (

Qr
max(C

∗)
)∗

is a maximal codense cover of C in MC.

Proof Since C is finite dimensional, it is a left and right semiperfect coalgebra. Let
P be a projective cover of C as right C-comodule with epimorphism π : P → C.
Since C is finitely generated as left C∗-module, P is also finitely generated as left
C∗-module and hence finite dimensional. Since P is a projective right C-comodule, P∗
is an injective right C∗-module (by [2, 9.5]). Moreover as π∗ : C∗ → P∗ is an essential
embedding, P∗ is isomorphic to the injective hull E(C∗) of C∗ as right C∗-module.
Since Qr

max(C
∗) ⊆ E(C∗), it is also finite dimensional. Hence D = (

Qr
max(C

∗)
)∗ is a

finite dimensional coalgebra and the transpose ı∗ : D � C of the algebra embedding
ı : C∗ → Qr

max(C
∗) is a surjective coalgebra homomorphism. Since ı is an essential

monomorphism, π is a small epimorphism.
The kernel K of π is isomorphic to

(
Qr

max(C
∗)/C∗)∗. Note that the dual of any

factor comodule K � L is a right C∗-submodule L∗ of Qr
max(C

∗)/C∗. Hence the
transpose map of any right C-colinear map g : C → K/L yields a right C∗-linear
map g∗ : (K/L)∗ → C∗ which could be extended to a right C∗-linear map from
Qr

max(C
∗)/C∗ to E(C∗) and must be zero (where E(C∗) denotes the injective hull

of C∗ as right C∗-module). Hence D is a codense cover of C. The maximality follows
now by a similar argument, taking into account that any codense cover D′ of C in
MC would be finitely generated as comodule and hence finite dimensional. �

1.7 Let K be a field and � be a quiver, i.e. a directed graph with finitely many
vertices �0 and finitely many arrows �1 and without cycles. The path K-coalgebra
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C associated to � is the vector space whose basis are all paths in � and with
comultiplication 	(w) = ∑

uv=w u ⊗ v. For each vertex i ∈ �0 denote by vi the unique
path of length zero at vertex i. Note that C is finite dimensional and C∗ is isomorphic
to the path algebra associated to �. Since by [11, 13.25] the right maximal ring of
quotients of a right artinian right non-singular ring A is isomorphic End(Soc (AA) ),
we only need to determine the right socle of C∗ to describe the right maximal ring of
quotients of C∗. Let A be the path algebra associated to �. Denote by �sink the set of
terminal vertices i ∈ �0, i.e. those vertices from where no arrow starts. Note that for
any i ∈ �sink : vi A = vi K is a minimal right ideal of A. Moreover for any path p in
A which ends at a terminal vertex i, the cyclic right ideal pA is a minimal right ideal
and isomorphic to vi A since both have the same maximal right ideal Mi generated
by all paths except vi. On the other hand let I be a minimal right ideal of A, then
I = γ A for some linear combination γ = ∑n

j=1 λ j p j of distinct paths pj and non-
zero coefficients λ j. Let i′ be the vertex where the path p1 ends and choose a path
q from i′ to some terminal vertex i. Then I = γ qA, since I was minimal. Note that
qMi = 0 implies that IMi = 0, i.e. the annihilator of I is the maximal right ideal Mi.
Hence I 
 vi A. Moreover γ q can be written as a linear combination of paths ending
at i, i.e. γ q = ∑

λ j p′
j where all paths p′

j end at i. Hence I ⊆ ⊕
p′

j A. For any terminal
vertex i ∈ �sink denote by Pi the set of paths ending at i and set ni = |Pi|. Then we
just showed that

Soc (AA) =
⊕

i∈�sink

⎛

⎝
⊕

p∈Pi

pA

⎞

⎠ 

⊕

i∈�sink

(vi A)ni .

By [11] the maximal right ring of quotients of A is isomorphic to the endomorphism
ring of Soc (AA):

Qr
max(A) 
 End(Soc (AA) ) 


∏

i∈�sink

End((vi A)ni ) 

∏

i∈�sink

Mni(K),

where Mn(K) denotes the ring of n × n-matrices over K.
Going back to our path coalgebra we have now a projection of coalgebras of a

direct product of matrix coalgebra onto C, i.e.

∏

i∈�sink

Mc
ni
(K) � C.

Here Mc
n(K) = (Mn(K))∗ denotes the n × n-matrix coalgebra with basis {Eij}1≤i, j≤n,

comultiplication

	(Eij) =
n∑

l=1

Eil ⊗ Elj

and counit ε(Eij) = δi, j.
In case of an infinite dimensional path coalgebra, how can we obtain a covering

coalgebra like the matrix coalgebra in our example? For instance for the divided
power coalgebra, that is the path coalgebra associated to a single loop. We will see
that there is no proper coalgebra cover in the sense defined above.
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1.8 We will now turn to some examples of modules that are equal its own maximal
codense cover. The next Lemma is probably known, but we were unable to find a
reference:

Lemma Every indecomposable non-faithful injective module over a principal ideal
domain is uniserial.

Proof Let D be a principal ideal domain and M an indecomposable non-faithful
injective D-module. By Matlis Theorem [14] M = E(D/p) for some non-zero prime
ideal p = Dp of D. Since D is a Dedekind domain, the localisation of D by p: Dp is
a discrete valuation ring. Hence Dp, Q and Q/Dp are uniserial Dp-modules. Take
any D-submodule N ⊆ Q/Dp. We will show that N is also a Dp-module. For any
a �∈ p = Dp and n = x/y + Dp ∈ N with y = upk ∈ p and p � u. Hence 1 = ra + spk

for some r, s ∈ D. This implies that 1
a − r = spk

a ∈ Dp. Therefore

1

a
n − rn = spk

a
x

upk
= sx

au
∈ Dp ⇒ 1

a
n = rn + Dp.

Hence the action of 1/a on an element n in Q/Dp is given by a D-scalar multipli-
cation. This shows that Q/Dp is a uniserial D-module. Since Q/Dp is injective and
contains a simple Dp-submodule which is isomorphic to Dp/pDp 
 D/p, we have
that

M 
 E(D/p) 
 Q/Dp

is a uniserial D-module. Note that all its submodules are of the form D/pi. �

1.9 The next theorem states that indecomposable injectives over suitable rings do
not have proper codense covers and as we will see below applies in particular to
the case of the divided power coalgebra mentioned in 1.7. A module M is called
couniform or hollow if every proper submodule is small.

Theorem The only possible small covers of a non-faithful indecomposable injective
module M over a principal ideal domain D are M and the quotient field Q of D.

Proof By a theorem of Matlis [14, Prop 3.1] M = E(D/p) for some maximal ideal p.
Furthermore M is uniserial by 1.8. Let π : P → M be a small cover. Then P is hollow,
since M is uniserial and whenever P = D + E, π(D) + π(E ) = M, i.e. π(D) = M or
π(E ) = M and hence D = P or E = P as Ke (π ) � P.

Since M is injective, P is divisible, because for all 0 �= x ∈ D

π(xP) = xπ(P) = xM = M,

i.e. xP = P as π has a small kernel. As D is a principal ideal domain, P is an
indecomposable injective D-module and again by Matlis theorem P 
 Q or P 

E(D/q) for some maximal ideal q. In the later case we must have p = q since

D/p = Soc(E(D/p)) 
 soc(E(D/q)/Ke (π )) = (D/qi+1)/(D/qi) 
 D/q

as E(D/q) is uniserial and all its submodules are of the form D/qi. �
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1.10 The divided power coalgebra is the path coalgebra C associated to the graph

1

x

��
.

that is the coalgebra over a field k with basis {1, x, x2, . . . , xi, . . .} and comultiplica-
tion:

	(xn) =
n∑

i=0

xi ⊗ xn−i

and counit

ε(xn) = δ0,n.

Corollary Let C be the divided power coalgebra over a field k. Then C is its own
maximal codense cover in the category of C-comodules MC.

Proof The dual algebra C∗ 
 k[[Z ]] of C is the power series ring in one variable, by
the isomorphism:

f �→
∞∑

n=0

f (xn)Z n

Note that the power series ring in one variable is a discrete valuation ring, e.g.
a principal ideal domain. Since C is an injective cogenerator in MC with simple
coradical C0 = k1, C is a non-faithful indecomposable injective C∗-module over the
discrete valuation ring C∗. By Theorem 1.9 the only small covers of C in C∗-Mod
are C and the quotient field Q of C∗. Since C∗ is not a C-comodule, Q is also not a
C-comodule. Hence the only small cover of C as C-comodule is C itself. �

2 Dual Non-singularity of Modules and Non-singular Coalgebras

Recall that a left R-module M is called singular if every element of M is annihilated
by an essential left ideal of R. An R-module M is called non-singular if it contains no
non-zero singular submodule.

2.1 Non-singularity generalises torsion-freeness of modules to the non-commuta-
tive setting. Lambek’s torsion theory is the right concept for a module theoretic
setting in which the construction of maximal dense extension of modules are put.
Dual Goldie torsion theories have been studied by various authors [9, 13, 18]. As
singular modules play the rôle of torsion modules, small modules will play a similar
rôle in the dual situation. Let S be the class of small modules in σ [M], i.e. those
which are small in their injective hull in σ [M]. S is a Serre class, i.e. it is closed under
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submodules, factor modules and extensions (and hence also under finite direct sums).
Define

ρ(X) = Re(X,S ) =
⋂

{U ⊆ X | X/U ∈ S}

for any X ∈ σ [M] and call X dual non-M-singular if ρ(X) = X. These are precisely
those modules which do not have any non-zero small homomorphic image.

Since an injective module is a direct summand in any extension, injectives are
never small. Hence cohereditary modules, i.e. those all whose factor modules are
injective, are examples of dual non-M-singular modules. On the other hand there
exist examples of injective modules that are subdirect products of their M-small
factor modules (see Zoeschinger [23]).

2.2 Pushing singularity to smaller categories like σ [M] needed a characterisation
that was free of referring to left ideals of a ring. Concepts for singularity and their
duals had been already proposed in some Abelian categories by Pareigis [17] and
it is not difficult to see that in the module case a module M is singular if and only
if it is a factor module of a module by an essential submodule. In the case of σ [M]
it turned out, as shown in [21], that non-singularity of M could be characterised by
the internal property that any essential submodule is dense. This property has been
studied by Zelmanowitz in [22] where he also termed it polyform. It is not difficult to
dualise those notions, but it turns out that they are not always equivalent.

2.3 Dual to a polyform module, call a module M copolyform if for every small
submodule K of M, the canonical projection M → M/K is a codense cover. Note
that dual non-M-singular modules X in σ [M] are copolyform since for any small sub-
module K of X any factor module K/L is also M-small and thus Hom(X, K/L ) = 0,
i.e. X → X/K is codense. The converse is not true, e.g. Z is copolyform, but not non-
Z-small. Copolyform modules had been introduced in [12] and were studied also
in [19].

2.4 By definition it is clear that copolyform modules can be characterised by their
homomorphisms to factor modules. For any two modules X and Y set

∇(X, Y ) = { f ∈ Hom(X, Y ) | Im ( f ) � Y}.

This set has been introduced by Beidar and Kasch in [1] were it was termed the
cosingular ideal of X and Y. Suppose M is copolyform and f ∈ ∇(M, M/N) for
some N � M then Im ( f ) = K/N � M/N and N � M implies K � M. But as the
projection M � M/K is codense, f ∈ Hom(M, K/N ) = 0. Thus ∇(M, M/N) = 0.
On the contrary, if ∇(M, M/N) = 0 for all N � M then for any small cover π :
M � F with K = Ke π � M and submodule L ⊆ K we have Hom(M, K/L ) ⊆
∇(M, M/L) = 0. Hence π : M � F is a codense cover. We have just proved the
following statement:

Theorem An R-module M is copolyform if and only if ∇(M, M/N) = 0 for all
N � M.
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Choosing N = 0 in the above Theorem, we get that a copolyform module has no
non-zero homomorphism with small image, i.e. ∇(M ) := ∇(M, M ) = 0. Note that
under some suitable projectivity conditions ∇(M ) equals Jac (End(M )).

2.5 Note that for self-projective modules M, ∇(M ) = Jac (End(M )) (see [20]).

Theorem A self-projective module M is copolyform if and only if Jac (End(M )) = 0.

Thus a ring R is copolyform as left R-module if and only if it is semiprimitive.

2.6 Since our aim is to apply the module theoretic terms above to the situation of
coalgebras, recall that any coalgebra C of a field k is an injective cogenerator in the
category MC of right C-comodules. Moreover there exists an anti-isomorphism of
rings between the dual algebra C∗ and the endomorphism of C as right C-comodule
and an isomorphism of rings between C∗ and the endomorphism of C as left
C-comodule:

End(C∗C )op 
 C∗ 
 End(CC∗ ).

Under some light injectivity and cogenerator properties we can say much more
about copolyform modules. A module Q is called pseudo-injective with respect to a
non-zero monomorphism f : Y ↪→ X if for all non-zero g : Y → Q there exist h ∈
End(Q ) and k ∈ Hom(X, Q ) such that f k = gh �= 0. A module Q is called pseudo-
injective in σ [M] if it is pseudo-injective with respect to all non-zero monomorphism
f : Y ↪→ X in σ [M].

Lemma Let M be pseudo-injective in σ [M]. Then Hom(M/N, M ) = 0 for all sub-
modules N such that M/N is M-small provided ∇(M ) = 0.

Proof Assume that M/N is small in some module X ∈ σ [M] and let f : M/N →
M be a homomorphism. Suppose f is non-zero then by pseudo-injectivity there are
homomorphisms h ∈ End(M ) and k ∈ Hom(X, M ) such that f h = ik �= 0 where i :
M/N ↪→ X denotes the inclusion. Since homomorphic images of small modules are
small, Im ( f h ) = Im (ik ) � M. Considering the projection p : M � M/N we get a
homomorphism pf h ∈ End(M ) whose image is small in M. Since ∇(M ) = 0, pf h =
0 which implies f h = 0, a contradiction. Thus Hom(M/N, M ) = 0. �

2.7 Lemma 2.6 shows that a pseudo-injective module M with Hom(M/N, M ) �= 0
for all non-zero N ⊆ M, is dual non-M-singular if and only if ∇(M ) = 0. We will
show that this is also equivalent to End(M ) being non-singular. Say that a module M
is coretractable if for all non-zero submodules N of M: Hom(M/N, M ) �= 0. We first
need the following Lemma

Lemma Let M and Q be left R-modules and T := End(Q ). Denote by Z (M∗) the
singular submodule of M∗ := Hom(M, Q ) as right T-module. Suppose that Q is
coretractable then

Z (M∗) ⊆ ∇(M, Q)
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holds. If moreover Q is pseudo-injective with respect to all monomorphisms of the
form g : Q/Ke g ↪→ Q for any 0 �= g ∈ T then equality hold, i.e. Z (M∗) = ∇(M, Q).

Proof Take f ∈ Z (M∗). Then AnnT( f ) = {g ∈ T | fg = 0} is essential in T. Sup-
pose Im ( f ) + U = Q for some submodule U of Q. Then AnnT( f ) ∩ AnnT(U) =
AnnT(Im ( f ) + U) = 0 implies Hom(Q/U, Q ) = AnnT(U) = 0. By hypothesis
U = Q, i.e. Im ( f ) � Q and f ∈ ∇(M, Q).

Now assume that Q is pseudo-injective with respect to all monomorphisms g :
Q/Ke (g ) ↪→ Q. Let f ∈ ∇(M, Q) and g ∈ T such that gT ∩ AnnT( f ) = 0. Suppose
there exists a non-zero h ∈ AnnT(Ke g) ∩ AnnT(Im ( f ) ). As h defines a non-zero
homomorphism from Q/Ke g to Q we have by hypothesis endomorphisms k, l ∈ T
such that 0 �= gk = hl. But as h ∈ AnnT(Ke g) ∩ AnnT( f ), we have hl = gk ∈ gT ∩
AnnT( f ) = 0; a contradiction. Thus AnnT(Ke g) ∩ AnnT(Im ( f ) ) = 0 and

0 = AnnT(Ke g) ∩ AnnT(Im ( f ) )

= AnnT(Ke g + Im ( f ) )


 Hom(Q/(Ke g + Im ( f ) ), Q ).

Since Q is coretractable, Ke g + Im ( f ) = Q, but as Im ( f ) � Q, g = 0. �

Note that the condition in Lemma 2.7 is fulfilled if Q is semi-injective, i.e. injective
with respect to all monomorphisms of the above form, or if Q is pseudo-injective in
σ [Q].

2.8 The last Lemma 2.7 together with 2.6 enables us to characterise those copoly-
form modules which are injective cogenerators:

Theorem Let M be a coretractable left R-module that is pseudo-injective in σ [M].
Then the following statements are equivalent:

(a) M is dual non-singular in σ [M].
(b) M is copolyform.
(c) ∇(M ) = 0.
(d) End(M ) is a right non-singular ring.

2.9 Having in mind the fact End(C∗C )op 
 C∗ 
 End(CC∗ ) we deduce from the last
Theorem 2.8 the following

Theorem Let C be a coalgebra over a field k. Then the following statements are
equivalent:

(a) C is a copolyform right C-comodule.
(b) C∗ is a left non-singular ring.
(c) C is a copolyform left C-comodule.

Any coalgebra that satisfies one of the above conditions is called non-singular.

2.10 In [16], Nastasescu et al. called a coalgebra C hereditary if C is a cohereditary
left (and/or right) C-comodule. By our remark in 2.1 cohereditary modules are dual
non-singular. Hence by 2.8 any hereditary coalgebra is non-singular. Chin showed
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in [3] that any path coalgbera is hereditary. Furthermore Chin and Montgomery
showed in [4] that any coalgebra over an algebraically closed field is Morita–Takeuchi
equivalent to a subcoalgebra of a path coalgebra. Thus hereditary and hence non-
singular coalgebras are ubiquitous. In [16] it has been also proven that a finite
dimensional coalgebra C is hereditary if and only if C∗ is left hereditary. Since there
are finite dimensional algebras which are left non-singular, but not left hereditary,
we easily can construct coalgebras which are non-singular but not hereditary.

Call a coalgebra C cosemiprime if I ∧ I �= C holds for all proper subcoalgebras I
of C. It is not difficult to see that C is a cosemiprime coalgebra if and only if C∗ is
semiprime and we deduce that a cocommutative coalgebra is non-singular if and only
if C is cosemiprime.

2.11 The strict hierarchies of coalgebraic properties

cosemisimple ⇒ hereditary ⇒ non-singular

collapses when assuming some flatness condition on the coalgebra: Since a coalgebra
C is flat as right C∗-module if and only if C∗ is left self-injective (see [2]), we have that
the dual algebra C∗ of a non-singular coalgebra C which is flat as left C∗-module must
be a left self-injective and left non-singular ring and hence von Neumann regular (as
it equals its own maximal left ring of quotient). Note that a von Neumann regular
ring is semiprimitive, hence Jac (C∗) = 0. By [2], Jac (C∗) = C⊥

0 where C0 denotes the
coradical of C. Hence C⊥

0 = 0 implies C = C0. We just proved the following theorem:

Theorem A coalgebra C is cosemisimple if and only if C is non-singular and flat as
right C∗-module.

Since finite dimensional Hopf algebras are projective as comodule, we deduce
that finite dimensional Hopf algebra which are right non-singular coalgebras are
cosemisimple.

2.12 Note that any coalgebra C can be written as a sum of indecomposable injective
comodules Eλ. If C is cocommutative then each of the Eλ is actually a subcoalgebra
of C. Assume now that C is a cocommutative semiperfect coalgebra over a field k,
then C = ⊕

λ Eλ is a direct coproduct of finite dimensional cocommutative indecom-
posable coalgebras. If moreover C is non-singular, then each of the Eλ is also non-
singular and E∗

λ is a finite dimensional commutative semiprime k-algebra. Thus E∗
λ is

a finite field extension Kλ of k and Eλ = K∗
λ is a finite dimensional simple coalgebra.

Thus we have proved the following

Theorem Any cocommutative non-singular and semiperfect coalgebra is
cosemisimple.

2.13 The lattice of submodules of a module is pseudo-complemented, but its dual
lattice does not need to be. To overcome this problem while dualising module
theoretic notions, one has to make suitable assumption on the lattice of submodules.
An R-module M is called weakly supplemented if any submodule N of M has a weak
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supplement, that is a submodule L of M such that N + L = M and N ∩ L � M. This
is a weak form of a pseudo-complement in the dual lattice of submodules of M.

Theorem The following statements are equivalent for a weakly supplemented
module:

(a) M is copolyform.
(b) ∇(M, M/N) = 0 for all N ⊆ M.
(c) Every factor module of M is copolyform.
(d) ∇(M ) = 0 and M is M-im-small-projective, i.e. any diagram

M

f

��h		�
�

�
�

M
g

�� L �� 0

with Im ( f ) � L can be commutatively extended by some h : M → M.

Proof

(a) ⇒ (b) Let f : M → M/N have small image and choose a weak supplement L
of N. Thus M/N = (N + L)/N 
 L/(L ∩ N) ⊆ M/(L ∩ N). Since L ∩
N � M and f ∈ ∇(M, M/(L ∩ N), we have f = 0 by (a).

(b) ⇒ (c) let N ⊆ L ⊆ M such that L/N � M/N and f ∈ ∇(M/N, M/L). Then
fπN ∈ ∇(M, M/L) = 0, i.e. f = 0. Hence M/N is copolyform.

(c) ⇒ (a) is trivial and (b) ⇒ (d) is clear, since for N = 0, ∇(M, M ) = ∇(M ) = 0
and as ∇(M, M/N) = 0 for all factor modules L of M, there are no non-
zero homomorphisms f : M → L with small image, i.e. M is trivially M-
im-small projective.

(d) ⇒ (a) Let f ∈ ∇(M, M/N) with N � M and denote by πN : M → M/N the
canonical projection. By M-im-projectivity there exists h : M → M such
that πNh = f . Since Im ( f ) = Im (πNh ) � M/N and N � M, we have
Im (h ) � M, i.e. h ∈ ∇(M ) = 0. Thus f = 0. �

A module which satisfies condition (c) is also called strongly copolyform. This
is in general a stronger condition then copolyformness. In [19] strongly copolyform
modules are called copolyform.

2.14 A module M is called couniform or hollow if N + L = M implies N = M
or L = M for all proper submodules N, L of M. Uniserial modules are couniform
and couniform modules are indecomposable. Furthermore couniform modules are
trivially weakly supplemented since all proper submodules are small. From the last
characterisation of copolyform modules we easily deduce that a couniform module is
copolyform if and only if every projection M � M/N for any proper submodule N
of M is codense. Couniform copolyform modules are called epiform and satisfy the
property that all of their non-zero endomorphisms are epimorphisms. The converse
holds under some suitable assumptions as we will see later.
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2.15 In case of couniform modules we deduce from 2.8 the following

Corollary Let M be a couniform coretractable left R-module that is pseudo-injective
in σ [M]. Then the following statements are equivalent:

(a) M is dual non-M-singular.
(b) M is epiform.
(c) Every non-zero endomorphism of M is an epimorphism.
(d) Every non-zero homomorphism from a factor module L of M to M is surjective.
(e) End(M ) is a domain.

Proof

(a) ⇔ (b) Follows from 2.8.
(b) ⇒ (c) For any 0 �= f ∈End(M ), Im ( f ) �� M as ∇(M )=0. Thus Im ( f )=M.
(c) ⇒ (d) Let f : M/N → M since πN f is an epimorphism of M, f has to be an

epimorphism (here πN denotes the projection).
(d) ⇒ (e) If fg = 0, then Im ( f ) ⊆ Ke (g ). And if f �= 0, then M = Im ( f ) =

Ke (g ), i.e. g = 0.
(e) ⇒ (a) Follows from 2.8 as domains are non-singular. �

2.16 The characterisation 2.15 of epiform modules yields that a coalgebra C is
epiform as right (or left) comodule if and only if C∗ is a domain. Recall that a
coalgebra C is called coprime if C∗ is a prime ring. As we see, any coalgebra that
is epiform as coalgebra is a coprime coalgebra. In case C is cocommutative those
notions are equivalent. We are going to show that there exists a dichotomie for
coprime coalgebras that states that over a coprime coalgebra either every comodule
is projective or no non-trivial comodule is projective.

Theorem The following statements are equivalent for a coprime coalgebra C over a
field k:

(a) C is cosemisimple;
(b) C∗ is a simple ring.
(c) C is finite dimensional.
(d) There exists a non-zero projective right (left) C-comodule.
(e) There exists a non-zero right (left) C-comodule that is not singular as a C∗-

module.

In this case C∗ is a matrix algebra over k.

Proof

(a) ⇒ (b) Since C∗ is prime, it is indecomposable as an algebra. Hence C is an
indecomposable coalgebra, i.e. C cannot be written as the sum of two
non-zero subcoalgebras. By hypothesis, C is a direct sum of simple
subcoalgebras and hence must be a simple coalgebra. Thus C∗ is a matrix
algebra over k.

(b) ⇒ (c) Assume C∗ is simple, then C is a simple coalgebra, because if D is any
subcoalgebra of C, then D⊥ is an ideal of C∗ and hence 0 or C∗, i.e. D = C
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or D = 0. Since any non-zero element of C is contained in a non-zero
finite dimensional subcoalgebra of C, C must be finite dimensional.

(c) ⇒ (a) Since C is finite dimensional, C∗ is finite dimensional. As C∗ is also a
prime ring, it must be a matrix algebra.

(a) ⇒ (d) Is clear since every right (left) C-comodule is projective.
(d) ⇒ (e) Is trivial since projective modules are not singular.
(e) ⇒ (c) Suppose M is a non-zero left C-comodule which is not singular as C∗-

module. Then there exists a cyclic (and hence finite dimensional) C∗-
submodule N of M which is not singular. As the annihilator AnnC∗(N)

is not an essential left ideal of C∗, but all non-zero ideals of a prime ring
are essential left ideals, we conclude that AnnC∗(N) = 0, thus

C∗ = C∗/AnnC∗(N) ↪→ ⊕s
i=1C∗/AnnC∗(ni)

is finite dimensional, where ni is a generating set of N. �

2.17 By negating (c), (d), (e) of the last Theorem we deduce that a coprime coalge-
bra C over a field k has infinite dimension if and only if every right or left C-comodule
is singular as C∗-module if and only if the category of right or left C-comodules does
not contain any non-zero projective object. This shows the dichotomie of coprime
coalgebras: Either every comodule is projective and the coalgebra is necessarily a
matrix coalgebra or every comodule is singular as C∗-module and MC has no non-
zero projective object. This dichotomie shows also that we can not use projective
cover to build maximal codense covers of infinite dimensional coprime coalgebras.
From 2.15 have that any C which is epiform is either the dual of a finite dimensional
division algebra K over k or infinite dimensional such that the category of right
C-comodules consists of torsion C∗-modules, in particular there are no non-zero
projective objects in MC.

2.18 Copolyform module with projective covers can be characterised by their
endomorphism rings.

Proposition Let M be an R-module with projective cover P in σ [M]. Then M is
copolyform if and only if Jac (End(P )) = 0.

Proof Recall that Jac (End(P )) = ∇(P). Assume M to be copolyform and let f ∈
∇(P). Then, for any g ∈ Hom(P, M ), U := Im ( fg ) � M. However, by Lemma 1.3,
Hom(P, U ) = 0 and so fg = 0. This implies Im ( f ) ⊆ Ke (g ) and so

Im ( f ) ⊆
⋂

{Ke (g ) : g ∈ Hom(P, M )} = Re(P, M ) = 0,

as P is cogenerated by M (see [20, 18.4]). Thus f = 0, i.e. Jac (End(P )) = 0.
On the contrary if ∇(P) = 0, then P is copolyform by 2.5. Denote by p : P � M the
projection and let π : M � X be any small cover. The composition pπ : P � X is
also a small cover and therefore codense. In particular Hom(P, Ke (pπ ) ) = 0 and,
by projectivity of P, Hom(P, Ke (π ) ) = 0. By 1.3 π is a codense cover, i.e. M is
copolyform. �

2.19 The last proposition showed that a projective cover of a copolyform module
is copolyform as well.
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Corollary Let M be a copolyform module with projective cover P in σ [M], then
End(M ) is a subring of End(P ) such that every epimorphism f ∈ End(M ) with small
kernel is invertible in End(P ).

Proof Denote by p : P → M the projection and take any non-zero f ∈ End(M ).
Then by the projectivity of P, there exists a non-zero f̄ ∈ End(P ) such that pf = f̄ p.
Suppose there exists another g ∈ End(P ) such that pf = gp, then

0 = pf − pf = ( f̄ − g)p

implies Im ( f̄ − g ) ⊆ Ke (p ), i.e. f̄ − g ∈ ∇(P) = 0. Hence f̄ = g. Thus the corre-
spondence f �→ f̄ is uniquely defined.

Now assume that f is an epimorphism with small kernel, then pf = f̄ p implies
that f̄ p, and hence f̄ is an epimorphism with small kernel. By the projectivity of P,
f̄ splits and, as Ke ( f̄ ) � P, must be an isomorphism. �

2.20 The existence of a projective cover, turns the class S of M-small modules into
a cotorsion class:

Proposition Assume that M is dual non-singular in σ [M] and has a projective cover
P in σ [M]. Then the class of small modules in σ [M] is closed under submodules, factor
modules, extensions and direct products (in σ [M]) and can be described as:

S = {X ∈ σ [M] : Hom(P, X ) = 0}

Moreover for any Z ∈ σ [M], ρ(Z ) = Re(Z ,S ) is dual non-M-singular and Z/ρ(Z )

is M-small.

Proof Note that if S can be described as stated above, then it also satisfies the closure
properties. Hence we only need to show that S equals the class of modules X with
Hom(P, X ) = 0. Let X be any module in σ [M] and X̂ its injective hull in σ [M].
By [20, 17.9], X̂ is M-generated and hence P-generated. If X is not M-small, then
it is not small in its M-injective hull X̂. Thus assume there is a proper submodule
Y of X̂ such that X + Y = X̂. Then X/(X ∩ Y ) 
 X̂/Y is a nonzero P-generated
R-module. Hence there is an index set � and an epimorphism f : P(�) → X/(X ∩
Y ) and so, since P(�) is projective in σ [M], f can be lifted to a homomorphism
g : P(�) → X, i.e. Hom(P, X ) �= 0. Hence X �∈ S ⇒ Hom(P, X ) �= 0.

On the other hand assume 0 �= X ∈ S and f ∈ Hom(P, X ). Denote by Y =
Im ( f ) and let π : P → M be the projection. Then extend f to a homomorphism

g : M 
 P/Ke (π ) → Y/(Ke (π )) f

sending p + Ke (π ) to (p) f + (Ke (π )) f . Since M is dual non-M-singular, g = 0
and Y = Im ( f ) ⊆ (Ke (π )) f . Thus P = Ke (π ) + Ke ( f ), but since Ke (π ) � P,
Ke ( f ) = P and f = 0. This shows that X ∈ S implies Hom(P, X ) = 0 proving the
equality of the classes indicated.

Thus S is closed under submodules, factor modules, direct products and ex-
tensions. Note that it follows also that P is dual non-M-singular. Moreover since
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Z/ρ(Z ) is a subdirect product of M-small modules, it is M-small. Furthermore, since
P is projective and

Hom(P, ρ(Z )/Tr(P, ρ(Z ) ) ) = 0,

we must have ρ(Z ) = Tr(P, ρ(Z ) ), i.e. ρ(Z ) is P-generated and therefore dual
non-M-singular. �

In the case above, P generates the cotorsion theory whose cotorsion modules
are the M-small modules in σ [M]. the cotorsion free modules are precisely the
P-generated modules.
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