Profa. Cristiane - 11/03/2006 Aula 4 - Métodos de Otimização Irrestrita (continuação)

Definição 2: Um mapeamento ponto-a-conjunto A de \mathcal{X} para \mathcal{Y} é fechado em $x \in \mathcal{X}$ se as hipóteses: (a) $x_k \to x$, $x_k \in \mathcal{X}$ e (b) $y_k \to y$, $y_k \in A(x_k)$ implicam em (c) $y \in A(x)$.

Considere a seguinte situação: existe um conjunto solucao Γ ; os pontos são gerados segundo um algoritmo $x_{k+1} \in A(x_k)$ e cada novo ponto decresce (estritamente) uma funão de descida f, até que o conjunto de soluções Γ seja atingido.

Teorema da Convergência Global: Seja A um algoritmo em \mathcal{X} e suponha que, dado x_0 , a sequência $\{x_k\}_{k=0}^{\infty}$ é gerada de forma que $x_{k+1} \in A(x_k)$. Suponha também que:

- (a) todos os pontos x_k estão contidos num subconjunto compacto $S \subset \mathcal{X}$;
- (b) existe uma função contínua f sobre \mathcal{X} tal que (i) se $x \notin \Gamma$, antão f(y) < f(x), $\forall y \in A(x)$ e (ii) se $x \in \Gamma$, antão $f(y) \leq f(x)$, $\forall y \in A(x)$
 - (c) o mapeamento A é fechado nos pontos fora de Γ . Então, o limite de qualquer subsequência convergente de $\{x_k\}$ é uma solução do problema.

Corolário : Se, sob as condições do Teorema de Convergência Global, Γ consiste em um único ponto \overline{x} , então a sequência $\{x_k\}$ converge para \overline{x} .

Métodos de Busca Unidimensional

Objetivos: estudo de técnicas básicas para a resolução iterativa de problemas de otimização irrestrita. Isto inclui implementação e análise de velocidade de convergência.

Regra Geral: (-) começar de um ponto inicial; (-) determinar (segundo uma regra fixa) uma direção; (-) movimentar-se na direção escolhida, até atingir um mínimo relativo da função.

Proposição: Sejam $f: \mathbb{R}^n \to \mathbb{R}$, $f \in \mathcal{C}^1$, $x \in \mathbb{R}^n$ tal que $\nabla f(x) \neq 0$, $d \in \mathbb{R}^n$ tal que $\nabla^t f(x) d < 0$. Então existe $\overline{\alpha} > 0$ tal que $f(x + \alpha d) < f(x)$ para todo $\alpha \in (0, \overline{\alpha}]$.

Modelo de Algoritmo

Se x^* é uma solução de (P) e x_k é uma estimativa de x^* tal que $\nabla f(x_k) \neq 0$, os passos para definir uma nova estimativa x_{k+1} são dados pelo seguinte algoritmo:

ALG. 1 Passo 1: Escolher $d_k \in \mathbb{R}^n$ tal que $\nabla^t f(x_k) d_k < 0$;

Passo 2: (Determinação do tamanho do passo) Calcular $\lambda_k > 0$ tal que $f(x_k + \lambda_k d_k) < f(x_k)$ (este subproblema é chamado de busca linear)

Passo 3: Fazer
$$x_{k+1} = x_k + \lambda_k d_k$$

Discussão: análise da condição $\nabla f(x_k) \neq 0$.

Conclusões obtidas: A partir da discussão acima podemos ter as seguintes situações:

- decréscimos pequenos na função objetivo em função de se ter distâncias d_k pequenas;
- decréscimos pequenos na função objetivo quando utilizam-se d_k grandes;
- decréscimos pequenos na função objetivo devido ao problema de se tomar d_k quase ortogonais ao gradiente de f.