Next:Unified EntropyUp:Generalized Entropy Measures
Previous:Entropy of kind Go to:Table of Contents

Entropies of Order 1 and Degree s and Order r and Degree s


Sharma and Mittal (1975) [90] introduced and characterized two entropies called entropy of order $ 1$ and degree $ s$ and entropy of order $ r$ and degree $ s$ given by

$\displaystyle H^s_1(P)={(2^{1-s}-1)}^{-1}\bigg[\exp_2\bigg((s-1)\sum_{i=1}^n{p_i\log\p_i}\bigg)-1\bigg],\ s\neq 1,$
    (3.6)

and

$\displaystyle H^s_r(P)={(2^{1-s}-1)}^{-1}\bigg[{\bigg({\sum_{i=1}^n{p^r_i}}\bigg)}^{s-1\overr-1}-1\bigg],\ r\neq 1, s\neq 1, r>0,$
    (3.7)

respectively, for all $ P=(p_1,p_2,...,p_n)\ \in\ \Delta_n$, where$ r$ and $ s$ are real parameters.

Sharma and Mittal's main motivation was to generalize the three entropies, $ H_r(P), \,\,H^s(P),$ and $ _tH(P)$. With this aim, they arrived at $ H^s_r(P)$$ H^s_r(P)$ reduces to $ H^s(P)$ and $ _tH(P)$, when $ r=s$ and $ r^{-1}=t=2-s$, respectively.$ H^s_r(P)$ reduces to $ H^s_1(P)$ and $ H_r(P)$ when $ r\to 1$ and$ s\to 1$ respectively. Also, $ H^s_1(P)$ reduces to Shannon's entropy, H(P), when $ s\to 1$.

Thus, we see that the entropy of order $ r$ and degree $ s$ contain, either as a limiting or as a particular case, the Shannon's entropy, the entropy of order $ r$, the entropy of degree $ s$, the entropy of kind t, and the entropy of order 1 and degree $ s$.

We have presented in the previous subsections seven generalized entropies having one and/or two scalar parameters. A natural question arises at this stage, what kind of other generalized entropies exist in the literature. For a complete list we refer to section 3.6.2 (Taneja, 1989; 1990a) [105], [106].
 


21-06-2001
Inder Jeet Taneja
Departamento de Matemática - UFSC
88.040-900 Florianópolis, SC - Brazil