Next:Composition Relations Among theUp:Entropy-Type Measures
Previous:Entropies of Order and Go to:Table of Contents

Unified (r,s)-Entropy


Instead of studying the properties of the entropies (3.1), (3.3), (3.5), (3.6) and (3.7) separately, our aim here is to study them in a unified way. This unification is as follows:

$\displaystyle {\bf {\ensuremath{\boldsymbol{\mathscr{H}}}}}^s_r(P)= \left\{ \be......neq 1 \\ H^1_r(P), & r\neq 1, \, s=1 \\ H(P), & r=1, \, s=1\end{array}\right.$
    (3.8)

for all $ r \in (0,\infty)$ and $ s \in (-\infty,\infty)$, where$ H^1_r(P)$ is the same as $ H_r(P)$ given in (3.1). From now onwards, we shall use the notation $ H^1_r(P)$ instead of $ H_r(P)$.

The entropies $ H^s(P)$ and $ _tH(P)$ do not appear in the unified expression (3.8) because they are particular cases of$ H^s_r(P)$, and hence are already contained in it. According to the notations above, $ H^s(P)$ given in (3.3) means $ H^s_s(P)$ for$ r=s$ in $ H^s_r(P)$. Henceforth, we shall consider this notation too.

It is customary to study the generalized measure given in (3.8) for positive values of $ r$ and $ s$. Taneja (1989) [105] and Taneja et al. (1989) [109] studied then for $ r>0$ and any $ s$. The natural question arises, why to keep$ r>0$? Why not to study them for $ r\leq 0$. This is our aim in this chapter i.e., to study the measure (3.8) for $ r,s\\varepsilon \ (-\infty, \infty)$. By considering $ r<0$, again the problem arises is that, we can find probability distributions such that the measure (3.8) become infinite. To avoid this, we shall redefine the set $ \Delta_n$ in the following way: 

$\displaystyle _r\Delta_n=\Big\{P=(p_1,...,p_n)\Big\vert \sum_{i=1}^{n}p_i=1,\,\,$with$\displaystyle \,\, p_i\geq 0,\,\, r>0\,\,$and$\displaystyle \,\,p_i>0,\,\, r\leq 0, \,\,\forall i\Big\}.$
Unless otherwise specified from now onwards, we shall consider the measures $ {\bf {\ensuremath{\boldsymbol{\mathscr{H}}}}}^s_r(P)$, for all $ P, Q \in$$ _r\Delta_n,\, r,s \in (-\infty,\infty)$.

We call, the unified expression (3.8), i.e.,$ {\bf {\ensuremath{\boldsymbol{\mathscr{H}}}}}^s_r(P)$, the unified $ (r,s)-$entropy.

From the unified expression (3.8), we observe that$ {\bf {\ensuremath{\boldsymbol{\mathscr{H}}}}}^s_r(P)$ is a continuous extension of $ H^s_r(P)$ with respect to the parameters. In order to study the properties of $ {\bf {\ensuremath{\boldsymbol{\mathscr{H}}}}}^s_r(P)$ it is sufficient to study the properties of $ H^s_r(P)$ for $ r\neq 1, \ s\neq 1$, because the rest part follows by continuity with respect to $ r$ and $ s$. For simplicity, this observation is denoted as follows:

$\displaystyle {\bf {\ensuremath{\boldsymbol{\mathscr{H}}}}}^s_r(P)=CE\Big\{ H^s_r(P):r\neq 1,\ s\neq 1\Big\},$
    (3.9)

where "CE" means "continuous extension" with respect to the parameters $ r$ and $ s$.

Note 3.1. The notations $ {\bf {\ensuremath{\boldsymbol{\mathscr{H}}}}}^1_r(P)$ and $ {\bf {\ensuremath{\boldsymbol{\mathscr{H}}}}}^s_1(P)$ are understood as follows:

$\displaystyle {\bf\ensuremath{\boldsymbol{\mathscr{H}}}}^1_r(P)=\left\{\begin{array}{ll}H^1_r(P), & r\neq 1 \\  H(P), & r=1\end{array}\right.$
and
$\displaystyle {\bf {\ensuremath{\boldsymbol{\mathscr{H}}}}}^s_1(P)=\left\{\begin{array}{ll}H^s_1(P), & s\neq 1 \\  H(P), & s=1\end{array}\right.$
respectively, for all $ P=(p_1,p_2,...,p_n)\ \in\ \Delta_n$$ r \in (0,\infty)$ and $ s \in (-\infty,\infty)$.


Subsections

21-06-2001
Inder Jeet Taneja
Departamento de Matemática - UFSC
88.040-900 Florianópolis, SC - Brazil