Next:Entropy of KindUp:Characterizations of Generalized Entropies
Previous:Entropy of Degree Go to:Table of Contents

Entropy of Degree (r,s)


Sharma and Taneja (1975) [92] presented an axiomatic characterization of degree $ (r,s)$. It is as follows:

Let $ H^{r,s}_n : \Delta_n$$ \rightarrow I\!\!R$ be a real valued function satisfying

$\displaystyle H^{r,s}_n(P)=\sum_{i=1}^n{h(p_i)},$
and
$\displaystyle \sum_{i=1}^n{\sum_{j=1}^m{h(p_iq_j)}}=\sum_{i=1}^n{\sum_{j=1}^m\,{p^r_i\,h(q_j)}}+\sum_{i=1}^n{\sum_{j=1}^m\,{q^s_j\,h(p_i)}},$
    (3.17)

where $ h:[0,1] \rightarrow I\!\!R$ be a continuous function with$ h({1\over 2})={1\over 2}$. Then

$\displaystyle H^{r,s}_n(P)=(2^{1-r}-2^{1-s})^{-1}\sum_{i=1}^n{(p^r_i-p^s_i)},\r\neq s,\ r>0,\ s>0$
    (3.18)

Sharma and Taneja (1977) [93] extended the functional equation (3.17) by the following generalized additivity: 

$\displaystyle H(P*Q)=G(P)H(Q)+H(P)G(Q),$
for all $ P \in \ \Delta_n$,$ Q\ \in\ \Delta_m$ and $ P*Q\in\Delta_{nm}$, where
$\displaystyle H(P)=\sum_{i=1}^n{h(p_i)},$
and 
$\displaystyle G(P)=\sum_{i=1}^n{g(p_i)},$
with $ f$ and $ g$ real valued continuous functions defined over [0,1] and $ h({1\over 2})={1\over 2}$. This lead us to the measure (3.18) along with the trigonometric measures given in section 3.6.2.


21-06-2001
Inder Jeet Taneja
Departamento de Matemática - UFSC
88.040-900 Florianópolis, SC - Brazil