Next:Dimensional Divergence Measures andUp:Unified Divergence Measures
Previous:Second Generalizations Go to:Table of Contents

Properties of the Unified (r,s)-Divergence Measures

We shall present some properties of the measures given by (4.6), (4.7), (4.10) and (4.11). These properties are similar to one given in Chapter 2 for the unified $ (r,s)-$relative information measure $ {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P\vert\vert Q)$. Also the proof follows on similar lines, so their details are excluded. For simplicity of notations, we shall take $ ^1{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P\vert\vert Q)=\ ^1{\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q)$$ ^2{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P\vert\vert Q)=\ ^2{\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q)$,$ ^1{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P\vert\vert Q)=\ ^3{\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q)$, and $ ^2{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P\vert\vert Q)=\ ^4{\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q)$.

Similar to expression (4.3) we can write 

$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert ......\ensuremath{\boldsymbol{\mathscr{N}}}}^1_r(P\vert\vert Q)\big),\ \alpha=1,2,3\ $   and$\displaystyle \ 4,$

where $ {\ensuremath{\boldsymbol{\mathscr{N}}}}_s$ is as given in (4.19).

Property 4.24. (Nonnegativity)$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q) \geq 0\ (\alpha =1,2,3\ $   and$ \ 4)$ with equality iff $ P=Q$.

Property 4.25. (Continuity)$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q)\ (\alpha =1,2,3\ $   and$ \ 4)$ are continuous functions of the pair $ (P,Q)$ and are also continuous with respect to the parameters $ r$ and $ s$.

Property 4.26. (Symmetry)$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q)\ (\alpha =1,2,3\ $   and$ \ 4)$ are symmetric functions of their arguments in pair, i.e., 

$\displaystyle ^\alpha {\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(p_1,...,p_n\v......r{L}}}}^s_r(p_{\tau(1)},...,p_{\tau(n)}\vert\vert q_{\tau(1)},...,q_{\tau(n)}),$

$ (\alpha =1,2,3$ and 4), where $ \tau$ is any permutation from $ 1$ to $ n$.

Property 4.27. (Nonnaditivity). We have

$ ^\alpha {\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P_1*P_2\vert\vert Q_1*Q_2)......1)\,+ \, ^\alpha {\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P_2\vert\vert Q_2)$

$\displaystyle +\, (1-2^{1-s})\ ^\alpha {\ensuremath{\boldsymbol{\mathscr{L}}}}^......t Q_1)\ ^\alpha {\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P_2\vert\vert Q_2),$



for all $ P_1,\ Q_{1}\in \Delta_n$$ P_2,\Q_{2} \in \Delta_m$ and $ P_1*P_2, Q_1*Q_{2} \in \Delta_{nm}$$ \alpha =1,2,3$ and $ 4$.

Property 4.28. (Monotonicity).$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q)$ ($ \alpha =1,2,3$ and $ 4$) are increasing functions of $ r$ ($ s$ fixed) and of $ s$ ($ r$ fixed). In particular, when $ r=s$, the result still holds.

Property 4.29. (Convexity).$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q)$ ($ \alpha =1,2,3$ and $ 4$) are convex functions of the pair of probability distributions $ (P,Q) \in\Delta_n\times\Delta_n$ for $ s\geq r> 0$.

Property 4.30. (Schur-convexity).$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q)$ ($ \alpha =1,2,3$ and $ 4$) are Schur-convex functions in the pair $ (P,Q) \in\Delta_n\times\Delta_n$.

Property 4.31. (Generalized data processing inequalities). We have 

$\displaystyle ^\alpha {\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r\big(P(B)\vert......\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q),\ \(\alpha =1,2,3\ $   and$\displaystyle \ 4)$
where$ P(B)$ and $ Q(B)$ are the probability distributions given by
$\displaystyle P(B)=\Big(\sum_{i=1}^n{p_ib_{i1}},...,\sum_{i=1}^n{p_ib_{im}}\Big)\\in\ \Delta_m,$
and
$\displaystyle Q(B)=\Big(\sum_{i=1}^n{q_ib_{i1}},...,\sum_{i=1}^n{q_ib_{im}}\Big)\\in\ \Delta_m,$
where $ B=\{b_{ij}\}$$ b_{ij}\geq 0$$ \forall \ i=1,2,...,n$$ j=1,2,...,m$ is a stochastic matrix such that$ \sum_{j=1}^n{b_{ij}}=1$$ \forall \ i=1,2,...,n$.

Property 4.32. (Strong generalized data processing inequalities). If the stochastic matrix B given in the property 4.31 is such that there exists an $ i_o$ for which$ b_{i_{o}j}\geq c>0$$ \forall\ j=1,...,m$, then we have 

$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r\big(P(B)\ver......{\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q),\ \ (\alpha =1,2,3\ $   and$\displaystyle \ 4), \,\,\, s\geqr>0$

Property 4.33. (Inequalities among the measures). We have

(i) $ ^\alpha {\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q)\left\{\begi......mbol{\mathscr{L}}}}^1_r(P\vert\vert Q), & 1\leq s< \infty\end{array}\right.$ for $ \alpha =1,2,3$ and 4.
(ii) $ ^\alpha {\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q)\left\{\begi......mbol{\mathscr{L}}}}^s_1(P\vert\vert Q), & 1\leq r< \infty\end{array}\right.$ for $ \alpha =1,2,3$ and 4.
(iii) $ ^1 {\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q)\left\{\begin{arr......{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q), & s\geq r\end{array}\right.$
(iv) $ ^3 {\ensuremath{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q)\left\{\begin{arr......{\boldsymbol{\mathscr{L}}}}^s_r(P\vert\vert Q), & s\geq r\end{array}\right.$
(v) $ ^\alpha {\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P\vert\vert Q)\geq 4\ ^\alpha{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P\vert\vert Q),$ $ \alpha =1$ and $ 2,\ s\geq r > 0$.

21-06-2001
Inder Jeet Taneja
Departamento de Matemática - UFSC
88.040-900 Florianópolis, SC - Brazil