Next:Properties of Dimensional UnifiedUp:Dimensional Unified Divergence Measures
Previous:Dimensional Unified Arithmetic and Go to:Table of Contents

Composition Relations


We observe the measures $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1,P_2,...,P_M)$ ($ \alpha=1,2$ and $ 3$$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1,P_2,...,P_M)$ ($ \alpha=1,2$ and $ 3$) and$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{T}}}}^s_r(P_1,P_2,...,P_M)$ ($ \alpha=1,2$ and $ 3$) are continuous with respect to the parameters $ r$ and $ s$. This allows us to write them in the following simplified forms:

$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1,P_2,...,P_......Big\{\,^\alphaI^s_r(P_1,P_2,...,P_M)\left\vert r\neq 1, s\neq 1\Big\}\right.,$

$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1,P_2,...,P_......Big\{\, ^\alphaJ^s_r(P_1,P_2,...,P_M)\left\vert r\neq 1,s\neq 1\Big\}\right.,$
and
$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{T}}}}^s_r(P_1,P_2,...,P_......\Big\{\,^\alphaT^s_r(P_1,P_2,...,P_M)\left\vert r\neq 1,s\neq 1\Big\}\right.,$
$ \alpha=1,2$ and $ 3$, for all $ r,s \in (-\infty,\infty)$, where "CE" stands for "continuous extension" with respect to $ r$ and $ s$.

Also we can write

$ \displaystyle ^1{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1,P_2,...,P_M)={......}}_s\Big(\ ^1{\ensuremath{\boldsymbol{\mathscr{J}}}}^1_r(P_1,P_2,...,P_M)\Big),$

$ \displaystyle ^2{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1,P_2,...,P_M)=\......boldsymbol{\mathscr{D}}}}^1_r(P_j\vert\vert \sum_{k=1}^M{\lambda_k P_k})\Big)},$

$ \displaystyle ^3{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1,P_2,...,P_M)={......ol{\mathscr{M}}}}_s\Big({\ensuremath{\boldsymbol{\mathscr{H}}}}^1_r(P_j)\Big)},$

$ \displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1,P_2,...,P......\ensuremath{\boldsymbol{\mathscr{J}}}}^1_r(P_1,P_2,...,P_M)\Big),\ (\alpha =1\ $   and$ \3)$

$ \displaystyle ^2{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1,P_2,...,P_M)=\......}}}_s\Big({\ensuremath{\boldsymbol{\mathscr{D}}}}^1_r(P_j\vert\vert P_k)\Big)},$

$ \displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{T}}}}^s_r(P_1,P_2,...,P......\ensuremath{\boldsymbol{\mathscr{T}}}}^1_r(P_1,P_2,...,P_M)\Big),\ (\alpha =1\ $   and$ \3)$

and

$ \displaystyle ^2{\ensuremath{\boldsymbol{\mathscr{T}}}}^s_r(P_1,P_2,...,P_M)=\......\boldsymbol{\mathscr{D}}}}^1_r(\sum_{j=1}^M{\lambda_jP_j}\vert\vert P_k)\Big)},$

where $ {\ensuremath{\boldsymbol{\mathscr{M}}}}_s(x)$ and $ {\ensuremath{\boldsymbol{\mathscr{N}}}}_s(x)$ are as given by (3.10) and (4.4) respectively.
 


21-06-2001
Inder Jeet Taneja
Departamento de Matemática - UFSC
88.040-900 Florianópolis, SC - Brazil