Next:Unified Multivariate EntropiesUp:Dimensional Divergence Measures and
Previous:Composition Relations Go to:Table of Contents

Properties of M-Dimensional Unified (r,s)-Divergence Measures


In this subsection we shall give some properties of $ M-$dimensional unified $ (r,s)-$measures$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1,...,P_M)$$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1,...,P_M)$ and$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{T}}}}^s_r(P_1,...,P_M)$ ($ \alpha=1,2$ and 3).

Property 5.1. The measures $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1,...,P_M)$ ($ \alpha =1$ and 2), $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1,...,P_M)$ ($ \alpha=1,2$ and 3) and $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{T}}}}^s_r(P_1,...,P_M)$ ($ \alpha=1,2$ and 3) are nonnegative for all $ r>0$ and any $ s \in (-\infty,\infty)$ are zero iff$ P_1=P_2=...=P_M$. The nonnegativity of $ ^3{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1,...,P_M)$ follows under the conditions when either$ s\geq 2-{1\over r}$ or $ s\geq r$ with $ r>0$.

Property 5.2. For all $ r\ \in\ (0,\infty),\ s\\in\ (-\infty,\infty)$, we have 

$\displaystyle ^1{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1,...,P_M)\left\{......\boldsymbol{\mathscr{I}}}}^s_r(P_1,...,P_M), & \ s \geq r\end{array}\right.$
$\displaystyle \sum_{{j,k=1}_{j\neq k}}^M{\lambda_j\lambda_k}\^1{\ensuremath{\......\boldsymbol{\mathscr{J}}}}^s_r(P_1,...,P_M), & \ s \geq r\end{array}\right.$
and 
$\displaystyle ^1{\ensuremath{\boldsymbol{\mathscr{T}}}}^s_r(P_1,...,P_M)\left\{......\boldsymbol{\mathscr{T}}}}^s_r(P_1,...,P_M), & \ s \geq r\end{array}\right.$

Property 5.3. For all $ r\ \in\ (0,\infty),\ s\\in\ (-\infty,\infty)$, we have 

$\displaystyle ^3{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1,...,P_M)\geq \^1{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1,...,P_M),$
and 
$\displaystyle ^3{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1,...,P_M)\geq \ ^3{\ensuremath{\boldsymbol{\mathscr{T}}}}^s_r(P_1,...,P_M).$

Property 5.4. For all $ r\ \in\ (0,\infty),\ s\\in\ (-\infty,\infty)$$ \alpha =1$ and 2, we have 

$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P\vert\vert Q)...... ^\alpha{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P\vert\vert Q),\ s \geq r>0$

$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P\vert\vert Q)\geq 2\ ^\alpha{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P\vert\vert Q).$

Property 5.5. The measures $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1,...,P_M)$ ($ \alpha$=1 and 2), $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1,...,P_M)$ ($ \alpha$=1,2 and 3) and $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{T}}}}^s_r(P_1,...,P_M)$ ($ \alpha$=1,2 and 3) are increasing functions of $ r$ ($ s$ fixed) and of $ s$ ($ r$ fixed). In particular, when $ r=s$, the result still holds.

Property 5.6. For $ r$$ \in\ $(0,$ \infty$), $ s$$ \in\ $($ -\infty,\infty$), $ \alpha$=1 and 2, the measures$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{I}}}}(P_1,...,P_M)$$ ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}(P_1,...,$$ P_M)$ and $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{T}}}}(P_1,...,P_M)$ are Schur-convex functions of $ (P_1,...,P_M)\ \in\ \Delta^M_n$ i.e., $ (P_1,...,P_M)\prec (Q_1,...,Q_M)$ implies 

$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1,P_2,...,P_M)\leq\ ^\alpha{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(Q_1,Q_2,...,Q_M),$
$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1,P_2,...,P_M)\leq\ ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(Q_1,Q_2,...,Q_M)$
and 
$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{T}}}}^s_r(P_1,P_2,...,P_M)\leq\ ^\alpha{\ensuremath{\boldsymbol{\mathscr{T}}}}^s_r(Q_1,Q_2,...,Q_M).$

Property 5.7. (Generalized data processing inequalities). For $ r$$ \in\ $ (0,$ \infty$), $ s$$ \in\ $ ($ -\infty,\infty$), $ \alpha$=1 and 2, we have 

$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1(B),P_2(B),......M(B))\leq\ ^\alpha{\ensuremath{\boldsymbol{\mathscr{I}}}}^s_r(P_1,P_2,...,P_M),$

$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1(B),P_2(B),......_M(B))\leq\ ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1,P_2,...,P_M)$
and 
$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{T}}}}^s_r(P_1(B),P_2(B),......M(B))\leq\ ^\alpha{\ensuremath{\boldsymbol{\mathscr{T}}}}^s_r(P_1,P_2,...,P_M),$
where
$\displaystyle P_j(B)=\Big(\sum_{i=1}^n{p_{ji}b_{1i}},\sum_{i=1}^n{p_{ji}b_{2i}},...,\sum_{i=1}^n{p_{ji}b_{mi}}\Big)\\in\ _r\Delta_n,\ \forall j=1,2,...,M$
with B=$ \{b_{ij}\}$,$ \forall$ i=1,2,...,n; j=1,2,...,m being a stochastic matrix such that $ \sum_{j=1}^m{b_{ij}}$=1, $ \forall$ i=1,2,...,n. 
21-06-2001
Inder Jeet Taneja
Departamento de Matemática - UFSC
88.040-900 Florianópolis, SC - Brazil